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Abstract

Wavelet estimation, ray tracing, and traveltime inversion are fundamental problems in
seismic exploration. They can be finally reduced to minimizing a highly nonlinear cost
function with respect to a certain set of unknown parameters. I use simulated annealing
(SA) to avoid local minima and inaccurate solutions often arising by the use of linearizing
methods. I illustrate all applications using numerical and/or real data examples.

The first application concerns the 4th-order cumulant matching (CM) method for
wavelet estimation. Here the reliability of the derived wavelets depends strongly on the
amount of data. Tapering the trace cumulant estimate reduces significantly this depend-
ency, and allows for a trace-by-trace implementation. For this purpose, a hybrid strategy
that combines SA and gradient-based techniques provides efficiency and accuracy.

In the second application I present SART (SA ray tracing), which is a novel method for
solving the two-point ray tracing problem. SART overcomes some well known difficulties
in standard methods, such as the selection of new take-off angles, and the multipathing
problem. SA finds the take-off angles so that the total traveltime between the endpoints
is a global minimum. SART is suitable for tracing direct, reflected, and headwaves,
through complex 2-D and 3-D media. I also develop a versatile model representation in
terms of a number of regions delimited by curved interfaces.

Traveltime tomography is the third SA application. I parameterize the subsurface
geology by using adaptive-grid bicubic B-splines for smooth models, or parametric 2-D
functions for anomaly bodies. The second approach may find application in archaeological
and other near-surface studies. The nonlinear inversion process attempts to minimize the

rms error between observed and predicted traveltimes.
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Chapter 1

Introduction

Thus, in our reasoning we depend very much on ‘prior information’ to help
us wn evaluating the degree of plausibility in a new problem. This reasoning
process goes on unconsciously, almost znstantaneously, and we conceal how
complicated it really is by calling it ‘common sense’

E.T. Jaynes — Probability Theory: The Logic of Science

1.1 Introductory remarks

In general, geophysical inverse problems ultimately reduce to minimizing an error, ob-

jective, or cost function with respect to a set of unknown model parameters:

Cost Function(Model) = Minimum (1.1)

Most of these problems are nonlinear and very difficult to solve using standard optimiza-
tion techniques. The difficulties arise not only because of the nonlinearities involved in
such optimization problems, but also because frequently the unknown parameters, which
represent physical quantities, must satisfy a set of constraints. These are used to incor-
porate a priori geophysical or geological information on the model parameters. Generally
these constraints are simply bounding ranges (e.g. a velocity must be greater than zero),
but often, they represent additional nonlinear functions and relationships. Consequently,
the problem is usually cast as a constrained nonlinear optimization one. Other difficulties

arise from the fact that often the forward problem does not lend itself to be easily treated
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with standard techniques that are based on local gradient directions or derivatives (e.g.
the cost function has no analytical form and is nondifferentiable).

Nonlinear optimization problems are often solved iteratively. Given an initial guess,
the current solution is updated until no further improvement in the cost function is
observed. Here multimodality plays a key role for the success of the algorithm at hand,
for local minima may prevent it from finding the desired solution. This point represents
one of the most important concerns in solving equation (1.1).

That the minimization of a multimodal cost function using local techniques (e.g.
steepest descent) leads to the solution which is closest to the starting model is a com-
monly known fact. On the contrary, the simulated annealing (SA) method is not much
affected by the initial guess. As a result, the global minimum of the cost function can be
obtained. Figure 1.1 depicts the contrasting behavior between SA and a local algorithm
in minimizing a multimodal cost function. Local algorithms are “greedy” in the sense
that they only make downhill moves, whereas in the SA, uphill moves are not forbidden.

This allows SA to avoid local minima.

1.2 Simulated annealing applications

SA applies to a wide variety of applications. From circuit design [WS92] and optimal pro-
tein states conformation [BB89]|, to econometric problems [GFR94| and optimal deploy-
ment of missile interceptors [BJS88|. Van Laarhoven and Aarts describe more traditional
applications [vLA88|, while Sen and Stoffa focus on geophysical applications [SS95]. The
first application in Geophysics was made by Rothman in 1985 [Rot85, Rot86] for estimat-
ing residual statics corrections. Subsequently, the method has found several applications
like coherence optimization [LBT89], transmission tomography [AV90], waveform inver-

sion [SS91, LHS95], reflection inversion [PL93], resistivity inversion [SBS93|, earthquake
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¢ e
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Figure 1.1: Comparison of “greedy” algorithms with SA. (a) “Greedy” algorithms (e.g.
steepest descent) always perform downhill moves (dotted line), guiding the solution to
the minimum which is closest to the initial model. (b) SA occasionally accepts uphill
moves (solid line) so that it does not get stuck in local minima.

location [Bil94], earthquake source parameter estimation [HL95|, residual statics correc-
tions [LHS95], combined first-arrival traveltime and reflection coherency optimization

[PL97], etc. Though the SA method is a very time-consuming algorithm, the results

shown so far are encouraging as the numerous applications illustrate.

1.3 Simulated annealing, linearizing methods, and hybrid strategies

Both SA and linearizing optimization methods have commonly been used for solving geo-
physical parameter estimation problems. The drawbacks of the local (greedy) optimiza-
tion algorithms have already been described. Not only is the issue of local convergence
a problem, but also the fact that many geophysical inverse problems deal with very
complex cost functions which are not easily linearized. Despite the limitations of local
algorithms, their rapid convergence as compared to SA make them extremely useful for

most geophysical applications, since the amount of data usually involved is enormous and
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computational speed becomes a necessity. SA, on the other hand, is a time-consuming
algorithm. This is the price to be paid in exchange for obtaining the global minimum
of the objective function. Usually, hundred or thousand iterations should be performed
until convergence, even using fast approaches like very fast simulated annealing (VFSA)
[Ing89]. Simulated quenching (a variant of SA) is not always the best remedy for this
problem, for a trade-off between convergence speed and global convergence arises.

One way of exploiting the advantages of both methods and work out their respective
drawbacks, is to combine them into some hybrid strategy. Chunduru et al [CSS96] com-
bine the conjugate gradient method with VFSA for the inversion of 2-D resistivity data
and for seismic velocity analysis. Liu et al. [LHS95] combine the simplex method with
a SA algorithm based on Lane’s approach [Lan92| for 1-D acoustic waveform inversion
and residual statics. Hartzell and Liu [HL95] use the hybrid method of Liu et al. for
earthquake source parameters estimation. Both hybrid strategies have shown to be more
efficient than the approach based on SA alone, although their global convergence proper-
ties are not clear. In the next chapters, I will develop hybrid strategies to improve the
performance of VFSA for wavelet estimation and two-point seismic ray tracing. In par-
ticular I combine VFSA with the steepest descent method and a quasi-Newton method,

respectively.

1.4 Alternatives to simulated annealing

Simulated annealing optimization encompasses a wide family of algorithms which use dif-
ferent strategies regarding the perturbation stage, temperature schedule, and acceptance
criterion, as the variety of application problems illustrates. Other global optimization

algorithms exist to solve the same problems. Branch-and-bound and related exhaustive
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methods are guaranteed to find the global minimum, though not necessarily in an ac-
ceptable time [RR88|. Pure random search and the multistart methods [And72] are two
closely related stochastic methods which have been traditionally used for global optimiza-
tion. These methods are rarely used in nowadays applications due to their low efficiency
in terms of computational cost to obtain the global minimum. Simulated evolution-
ary optimization frequently offers more attractive alternatives [Fog94]. These methods
encompass genetic algorithms [Dav87, Gol89], evolution strategies and evolutionary pro-
gramming [Fog93]. Among other rather unlikely methods for global optimization, I can
mention taboo search [CK95], neural networks [RS88], etc.

Despite the fact that these methods do not lend themselves to theoretical understand-
ing (particularly regarding convergence), researchers have found them very effective in
some geophysical problems. Such is the case of genetic algorithms (see for example [SS95]
for detailed accounts of genetic algorithms in geophysical applications), taboo search in
connection to seismic inversion [VM96], and neural networks for automate velocity picking
[FK94]. The methods mentioned, together with “greedy methods”, and countless hybrid
combinations have been used successfully in many applications. However, neither of the
mentioned algorithms seems to be universally preferred for all problems. Researchers

find, usually through experimentation, which tool best fits the problem at hand.

1.5 Dissertation outline

This dissertation addresses some fundamental inverse problems arising in geophysics
which have not been solved satisfactorily using standard “greedy” algorithms nor ever
addressed using SA. In all cases I use very fast simulated annealing (VFSA) to globally

minimize the multimodal, nonlinear cost functions that are involved. In some cases I
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combine both VFSA with linearizing algorithms to expedite convergence and/or to re-
fine the solution. The first portion of the thesis, Chapter 2, provides enough introductory
material on SA that the dissertation stands on its own. It also points out the differences
between SA and simulated quenching, and explores strategies for dealing with constraints
other than bounding ranges.

Chapter 3 deals with the problem of wavelet estimation using the fourth-order cu-
mulant matching method [Tug87, Laz93, VU95a, VU96b]. The fourth-order cumulant
matching (CM) method has been recently developed for estimating a mixed-phase wavelet
from a convolutional process [Laz93]. Matching between the trace fourth-order cumulant
and the wavelet fourth-order moment is done in a minimum mean-squared error sense
under the assumption of a non-Gaussian, stationary, and statistically independent re-
flectivity series. This leads to a highly nonlinear optimization problem, usually solved
by techniques that require a certain degree of linearization, and that invariably converge
to the minimum closest to the initial model. Alternatively, the SA approach developed
in Chapter 3 provides reliability of the numerical solutions, reducing the risk of being
trapped in local minima.

Beyond the numerical aspect, the reliability of the derived wavelets depends strongly
on the amount of data available. However, using a multidimensional taper to smooth the
trace cumulant, I show that the method can be used even in a trace-by-trace implemen-
tation, a point that is, I believe, very important from the point of view of stationarity
and consistency. Here I combine both optimization techniques into a hybrid strategy to
exploit the efficiency of the linearizing algorithm and the reliability of the SA solutions.
I also demonstrate the viability of the method under several reflectivity models that may
arise in real situations. The application of the hybrid strategy is illustrated by means
of marine and field data examples. The consistency of the results is very encouraging

because the improved cumulant matching strategy I developed can be effectively used
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in a trace-by-trace implementation. This chapter appeared previously as a paper in
Geophysics [VU96D].

The purpose of Chapter 4 is to develop a new method for solving the two-point seismic
ray-tracing problem based on Fermat’s principle of stationary time, which I call SART
(simulated annealing ray tracing). In models where more than one raypath satisfies
Fermat’s principle (multipathing), SART focuses on finding the direct ray trajectory
whose traveltime is minimum. The nonlinear algorithm overcomes some well known
difficulties that arise in standard ray shooting and bending methods. Problems related
to: (1) the selection of new take-off angles, and (2) local minima in multipathing cases,
are overcome by using an efficient SA algorithm to find the ray parameters that generate
the absolute minimum path connecting source and receiver. At each iteration, the ray
i1s propagated from the source by solving a standard initial-value problem. The last
portion of the raypath is then forced to pass through the receiver. Using SA, the total
traveltime is then globally minimized and the appropriate initial conditions that produce
the absolute minimum path are so obtained.

As it is described in Chapter 4, SART is suitable for accurately tracing rays through
2-D models only (an extension to 3-D is well developed in Chapter 5). The model is
parameterized by rectangular cells of constant velocity (or slowness) and at least one
additional discontinuity (e.g. a reflector) can be included. This allows one to trace not
only direct waves, but also reflections and headwaves of a predefined signature. In fact,
SART can be used in conjunction with any available or user-preferred initial-value solver
system (in Chapter 5 I use a numerical ray-tracing procedure). A number of examples
of multipathing in moderately complex 2-D media are examined. The results using the
nonlinear two-point ray-tracing system demonstrate that the absolute minimum path
connecting source and receiver can be obtained regardless the initial guess. Parts of this

chapter appeared as a paper in Geophysical Research Letters [VU96a].
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Chapter 5 has two purposes: (1) to extend SART to encompass 3-D laterally varying
media of arbitrary complexity, and (2) to present a very flexible model parameterization
that can be used in conjunction with SART to trace complex raypaths through general
3-D media. Though the first purpose is the main goal, the second one is very important
too, since solving the forward problem is not always a well understood problem, especially
in complex velocity structures. In the present formulation, the model is characterized by
any number of regions separated by interfaces. The velocity field within each individual
region is specified separately. It may be any function of the space coordinates with the
constraint of being twice differentiable. Interfaces can have arbitrary form with the only
condition of being univalued. The problems of local minima and take-off angles selection
are more severe in the 3-D than in the 2-D case. These problems are overcome easily
by SART, for the basic principles regarding global convergence defined for 2-D, apply to
3-D as well.

In SART (3-D case) the differential equations that govern the wave propagation are
integrated using standard numerical ODE solvers until the ray emerges at the desired
endpoint following the absolute minimum traveltime path. This boundary-value problem
(BVP) is cast as a nonlinear optimization problem which is in turn solved by means of
VFSA. This guarantees convergence to the global minimum of the cost function rep-
resenting the total traveltime from source to receiver. In 3-D, in contrast to 2-D, the
cost function i1s at best a unimodal two-dimensional continuous smooth surface. But in
real life, the cost function is often a multimodal, discontinuous, nondifferentiable, rough
surface of two (or more than two) variables. To obtain the absolute minimum of such
an ill-behaved function, a stochastic technique like SA becomes an invaluable tool. A
number of synthetic examples are shown to demonstrate the versatility of the model
parameterization and the viability of SART to solve the BVP effectively. Although the

main goal of SART is to trace first-arrival direct waves, several strategies for dealing
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with complex raypaths (reflections, headwaves, multiples, etc) are well described. A dis-
cussion about SART performance in terms of computational cost and accuracy is also
presented and illustrated with numerous synthetic examples. This includes a quantitative
comparison between SART and some standard shooting techniques. Finally, several al-
ternative formulations regarding the optimization problem are explored and discussed in
detail. Some parts of this chapter were presented at V Congreso Argentino de Mecdnica
Computacional, Tucumdn, Argentina, and also published in the proceedings [Vel96].
The last portion of this thesis, Chapter 6, deals with the problem of traveltime tomog-
raphy using SA. The subsurface geology is parameterized either using (1) cubic B-splines
defined over a 2-D grid with variable spacing in both horizontal and vertical coordinates,
or (2) parametric 2-D functions aimed to represent anomaly-like bodies submerged in a
smooth background velocity. The flexible grid used in the spline approach can accom-
modate moderately complex smooth structures with only a few nodes. The parametric
approach, allows one to image velocity anomalies of various shapes, including abrupt
changes of velocity, using a small set of parameters. The approaches attempt to mini-
mize the rms error between observed and predicted arrival times, which are computed
using a finite-difference algorithm. VFSA was used to estimate the velocity at the spline
node locations, the grid spacing in each dimension, or the parameters defining the anom-
aly bodies. The solution is independent of the initial model because local minima are
avoided during the process by a convenient uphill-downhill exploration of the model
space. Results using synthetic examples show how moderately complex structures can
be obtained using a few parameters without introducing undesirable artifacts [VU95b].
The spline approach is especially suited for smooth models, and the parametric approach,

for imaging buried structures such as those arising in archaeology and other near-surface

studies [Vel98].



Chapter 2

Simulated Annealing

The development of high-speed computers has made it possible to incorporate
a ‘randomizing unit’ into some machines which will select random samples
ad hoc. The use of such mechanisms requires investigation.

Maurice G. Kendall — The Advanced Theory of Statistics, 1969

2.1 Introduction

The SA method is a stochastic computational algorithm for finding near-optimal solutions
to hard optimization problems. Van Laarhoven and Aarts provide a complete introduc-
tory treatment of SA and describe traditional applications [vLA88]. The SA method is
derived from statistical mechanics where the behavior of a large number of particles at a
given temperature is analyzed. In 1953, Metropolis et al. [MRR*53] presented a Monte
Carlo sampling technique for modeling the evolution of a solid submerged in a heat bath
at a given temperature. Three decades later, the technique was generalized and applied
to nonlinear optimization problems [KGV83|, specifically to the problem of partitioning,
component placement, and wire routing in VLSI (very large scale integration) design.
Here, the unknown parameters play the role of the particles in the solid, and the cost
(objective) function represents the energy of the system. In the SA approach, the model
space is randomly perturbed and new configurations are accepted (or rejected) so that
the cost function or energy decreases iteration after iteration. Occasionally, some in-
creases of the cost function are allowed and it is this uphill movement that allows the

system to escape from local minima. Initially, the temperature (a control parameter) is

10
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high enough so that almost all proposed configurations are accepted. On the contrary, at
low temperatures the probability of accepting a new configuration corresponding to an
increase of the cost function is small. The fluctuations of the random perturbations are
gradually decreased along with the temperature following a predefined cooling schedule,
and the process is stopped after a maximum number of iterations or when no noticeable
change in the cost function is observed during a certain number of consecutive steps. At
this point it is said that the system has “crystallized” in the sense that the minimum

energy state (global minimum) has been obtained.

2.2 Statistical mechanics, the Metropolis algorithm, and the annealing pro-

cess

The basics of statistical mechanics should be understood to appreciate the connection
between condensed matter annealing and the solution of hard optimization problems,
such as those occurring in the solution of some geophysical inverse problems. A system
consisting of a large number of particles interacting at a finite temperature can be de-
scribed by the position of the particles. The configuration of the system is referred to as
the “state” z. Such is the case of a fluid or melted solid submerged in a heat bath. If
T is the temperature of thermal equilibrium of the system with energy E(z), then the
probability wr(z) that the system is in state # can be described by the Boltzmann or
Gibbs distribution

nr(z) = e T (2.1)

where « i1s the Boltzmann’s constant,
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Z(T)= Y ewr" (2.2)

weX

is the partition function, and X is the set of all possible states.

The Metropolis algorithm (MA) [MRR*53] is a simple stochastic algorithm for sim-
ulating these kind of processes developed in the earliest days of scientific computing.
In each step of this procedure, a small random displacement (perturbation) Az to
the current state z with energy FE(z) is performed, and the energy change AE =
E(z + Az) — E(z) is then computed. Now, the ratio A between the probabilities of

both states is evaluated:

p=T\ETEE S (2.3)

If the energy of the new state is less than the energy of the previous state, that isif A > 1,
then the new configuration is accepted as the new state. If A < 1, that is if the energy of
the new state i1s greater than or equal to the energy of the previous state, then the new
configuration is accepted with probability h. This criterion for accepting or rejecting a
new state is known as the “Metropolis criterion” [MRR*53]. It can be shown that as the
number of iterations tends to infinity, the probability that the system is in a given state
z equals m7(z), and hence the distribution of the generated configurations converges to
the Boltzmann distribution [GG84].

It interesting to study the behavior of the system at low energy states, in order to
appreciate the crystalline structure of the melted solid as temperature is gradually de-
creased (chemical annealing). For this purpose, the temperature of the heat bath must be
decreased slowly enough so that the probability of obtaining lower energy states accord-

ing to the Boltzmann distribution (2.1) predominates. These states can be obtained by
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keeping the system in thermal equilibrium. As a counterpart, “quenching” is the process
by which the temperature of the heat bath i1s lowered very quickly giving not enough time
for the system to reach thermal equilibrium. Consequently, the probability of obtaining
low energy states is greatly reduced, and the resulting structure of the material may be

far from constituting a crystalline lattice.

2.3 Simulated annealing optimization

In 1983, Kirkpatrick et al. [KGV83] made the analogy of a computer design problem
with the physical system described in the previous section. They devised a strategy for
obtaining a near-optimal solution to the problem of partitioning, component placement
and wire routing in VLSI design. Basically, a Metropolis algorithm was applied at each
of a series of iterations with gradually decreasing temperatures. For applying SA to solve
an optimization problem of the form of equation (1.1), the following analogies must be

made:

e Identify the configuration of parameters (model) with the configuration of particles.
o Identify the objective or cost function, say ®, with the energy of the system.

o Identify the process of finding a near-optimal solution with the process of finding

the lowest energy states.

The Boltzmann constant « is set to 1 and the temperature 7' becomes a control parameter.

In addition, three very important functionals must be defined:

1. g(Az): the probability density function (pdf) for generating a new configuration

in the model space;



Chapter 2. Simulated Annealing 14

2. h(A®): the probability density function for accepting a new configuration; and

3. T}: the cooling schedule for the annealing process (temperature T at iteration k).

Here x represents the model space of M parameters. Note that both the generating
and the accepting pdf’s are a function of the temperature as well. The main differences
concerning performance among various SA techniques reside in the choice of these three
functions. Figure 2.1 shows a flow chart describing a typical SA algorithm. At each iter-
ation, a new state is generated by drawing from the pdf g(Az). The Metropolis criterion
is then evaluated and, after lowering temperature according to the cooling schedule 7}, a
new iteration is started. The process is stopped when a maximum number of iterations,
Emaz, is reached (note that other stopping conditions may be used). When the cost func-
tion increases, the probability of accepting the uphill move is given by h. In practice,
the new state is accepted if h is greater than a random number r, which is drawn from

a uniform pdf, U[0, 1].

2.3.1 Generating function

Initially, the Metropolis algorithm searched the model space using a uniform pdf for g.
Faster convergence was later achieved by using a Gaussian pdf instead, which concen-
trates on the states with lowest energy by narrowing the search as temperature decreased
(“Boltzmann annealing” [SH87]). In this case, the M-dimensional Gaussian pdf may be

expressed by

—Az?

g(Az) = (271'T)_M/2e 2T (2.4)

where Az = ¢ — z¢ 1s the perturbation applied to the previous configuration, zo. Here

temperature 7' can be viewed as a measure of the fluctuations of g around z,. At high
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Figure 2.1: Flow chart of a basic SA algorithm.
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temperatures, the model space is sampled more or less uniformly. Conversely, when

temperatures are low, perturbations tend to be smaller.

2.3.2 Acceptance function

Generally, the Metropolis criterion is used for accepting/rejecting new configurations:

h(A®) = 1 =X (2.5)
JE— — — ~/ e . .
e (i)Tk-I-l + e_;k ]_ —I‘ eA’I?

This expression is based on the probability of obtaining a new state with energy &4,
relative to the previous state with energy ®, where A® = &;,; — ;. This is essen-
tially the Boltzmann distribution. Following Metropolis, a new configuration is accepted
unconditionally if A® < 0, and accepted with probability A(A®) if A® > 0. Clearly,
as the temperature approaches zero, the acceptance probability decreases exponentially
and only the lowest energy states are accepted. This is the key point of SA optimiza-
tion. It states the most important difference with the so-called “greedy” algorithms.
While other optimization methods perform only downhill moves (i.e. accept only those
states for which the cost function decreases), SA allows uphill moves too. This behav-
ior facilitates exploring the whole model space without being trapped in local minima.
Linearizing techniques (e.g. steepest descent) belong to the class of greedy algorithms,
and their success for obtaining the global minimum of multimodal cost functions is very

much influenced, as is well known, by the starting model.

2.3.3 Cooling schedule

The schedule used to lower the temperature of the annealing process plays a key role in SA
optimization. Ideally, one would like to lower the temperature as fast as possible in order

to reach the lowest energy states in a few iterations. However, theory indicates that the
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cooling rate cannot be faster than a prescribed function if annealing, and not quenching,
1s desired. Back to the thermal process analogy arising in statistical mechanics, if the
metal is cooled slowly enough, the crystal lattice structure results in a configuration with
minimal energy (global minimum). On the contrary, if temperature is lowered too fast,
distortions in the crystal structure which represent higher energy states (local minima)
will be preserved at the end of the process. These two different processes, that is annealing
and quenching, are well known in chemical annealing.

Thus, for true annealing, thermal equilibrium must be obtained before temperature
is lowered. Originally, this state was reached by keeping temperature at a constant level
[MRR*53|. Later, it was found that the equilibrium could be obtained provided that the
temperature was lowered slowly enough. It was Geman and Geman [GG84] who showed
that the global minimum of ® can be (statistically) obtained if temperature is lowered

no faster than

To

Te= s (2.6)

where T is a constant and k is iteration. If the temperature is lowered faster than what
expressed in equation (2.6), a premature crystallization may occur and the system may
get trapped in a local minimum. A heuristic demonstration can be given to show that

expression (2.6) is a sufficient condition for the convergence to a global minimum [SH87]

(see Appendix A).

2.4 Fast annealing (FA)

A faster cooling schedule can indeed be used without affecting the convergence proof by

modifying the generating function. “Fast annealing” (FA) uses a Cauchy pdf of the form
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1 T
7 (Az? 4+ T?)M+D)/2

9(Az) = (2.7)

The cooling schedule that guarantees (statistically) that a global minimum can be found

for this particular choice of g is

T= 2" (2.8)

The corresponding heuristic demonstration is given in Appendix A. FA has proven to be
superior to standard annealing [SH87| due to the fact that its cooling rate is exponentially
faster than the logarithmic schedule used by BA. The fatter tail of the Cauchy distribution
(see Figure 2.2) allows the system to explore the model space more conveniently and local

minima are more easily avoided.

2.5 Very fast simulated annealing (VFSA)

Ingber [Ing89] proposed a SA technique that allows a still faster cooling schedule. This
scheme is superior to the aforementioned SA approaches [Ros92| and in some cases supe-
rior to evolutionary methods such as genetic algorithms [IR92]. VFSA uses a generating
function with fatter tails than the Cauchy’s. Contrarily to BA and FA which sample
infinite ranges, VFSA samples finite ranges. Besides, VFSA takes into account the dif-
ferences in each parameter-dimension by allowing g to expand or contract adaptively
according to the sensitivity of the cost function of each dimension (this procedure is

called “re-annealing”).
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Figure 2.2: In SA, a new model state is generated by drawing a perturbation from the
probability density function g(z). The figures show the pdf corresponding to Boltzmann
annealing (BA), fast annealing (FA) and very fast simulated annealing (VFSA), for T = 1,
T =0.1and 7' = 0.01. Note the fatter tail of the VFSA generating function, even at low

temperatures.
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2.5.1 Description of the algorithm

(%)

In VFSA, new parameters z; ' in dimension : are generated via the random variable y;

using

eV = e L y(Bi - A),  we[-1,1]. (2.9)

(k+1)

The new parameters z, are constrained to the range [A;, B;], and formula (2.9) is

repeated for all ¢ until a set of M new parameters are generated. The generating function

in the VFSA algorithm is defined as

M 1
g9(y) = H 2(ly:| + T3) In(1 + 1/T3)°

=1

(2.10)

where I have dropped the superscript k& for simplicity. The cumulative probability dis-

tribution may be obtained by the integral

G(y) = /_yll /_ylM 9(y)dy: - dym = l:[ Gi(yi), (2.11)

i) = 5 + N (2.12)

As a result, new points ruled by this distribution may be generated from a uniform

distribution u; € [0, 1] considering

yi = G7 ' (wi), (2.13)

hence
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y; = sgn(u; — %) T; [(1 +1/T;)l 2 1] . (2.14)

Having defined g(y), the cooling schedule that statistically guarantees the convergence

to a global minimum can be given by
Ti = T e~ "™, (2.15)
where c¢; is some user-defined constant that does not affect the convergence proof given in
Appendix A. In practical contexts, this constant may be used to tune the algorithm for

particular applications. For example, to reach a final temperature T%; in ky; iterations,

set

T .
= kM e 20 2.16
¢ fi og sz ( )

2.5.2 Re-annealing

It seems reasonable to use a wider generating function for the insensitive dimensions
relatively to the more sensitive ones. To account for different sensitivities of the cost
function of each parameter at different locations of the model space, temperatures are
periodically rescaled (every a hundred iterations, or so) so that g(y) expands or contracts
accordingly. The sensitivities are computed at the current lowest minimum, and the
parameter temperatures rescaled relatively to the maximum sensitivity by means of

T! =T;

2

, (2.17)

83

where
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~ , (2.18)
with § small.

2.5.3 Quenching

Whenever the number of parameters is large, the cooling rate (2.15) may be still too slow
for some applications (consider the exponent 1/M). In these cases, the cooling rate can

be accelerated using

T; = To; K™ (2.19)

where () is a quench factor set between 1 and M. Note that only for ) = 1 the statistical

convergence is ensured (Appendix A).

2.6 Annealing or quenching?

As seen in previous sections, the cooling rate is somehow governed by the selected gen-
erating function. Figure 2.3 shows various cooling schedules for different SA algorithms.
For simplicity, To is such that 77 is about the same in all cases. Note that in VFSA,
temperature decreases much faster than in BA and FA, especially for M small.

For many practical applications, the cooling schedule which is consistent with the
heuristic proof of global convergence is too slow because too many iterations are required
to reach the lower energy states, particularly when the number of unknowns is relat-
ively large. With expediency the only reason given, many researchers use faster cooling

schedules that do not guarantee convergence, claiming to use SA to solve their problems.
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Figure 2.3: Comparison of various SA cooling schedules.

For example, a commonly used cooling rate in BA is the exponential schedule of the

form

Ty, = Ty e o*, a small, (2.20)

which is equivalent to another frequently used cooling rate

Tr = BT_1 = B*Ty, B=e" (2.21)

These two schedules are particular cases of equation (2.19) for @ = M and ¢; = a.
It is clear that the convergence proof given for the BA algorithm is violated if one of
the above two cooling schedules is used. These algorithms should be called simulated
quenching (SQ) rather than simulated annealing, for the system is not guaranteed to

reach the lowest energy states in annealing time. Nevertheless, any attempt to reduce
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the number of iterations it is always worthwhile, and quenching has been found very
useful in a number of circumstances [Ing93]. For example, Mirkin et al. compared
various (quenching) schedules for the residual statics problem and obtained satisfactory
results [MVC93]. An interesting discussion on annealing vs quenching can be found in

[Ing96].

2.6.1 Initial temperature

The selection of the initial temperature is sometimes a critical issue in standard SA
algorithms. If 7 is too high, the system will take longer to reach the lowest energy states.
On the other hand, if 7 is too low, the system might freeze too soon. The convergence
proof for BA requires that the initial temperature in equation (2.6) is sufficiently high.
This is not the case for FA and VFSA, where Ty is arbitrary, as shown in Appendix A.
Besides, since the cooling rate of both FA and VFSA is much faster that BA (see Figure
2.3), the selection of a high value for 7} is not critical at all. In practical contexts, the
initial temperature should be such that the expected cost at this temperature is within
one standard deviation of the mean cost [Whi84]. This is to ensure that almost all
proposed configurations are accepted at this stage (the system is completed “melted”).
For this purpose it is enough to set 7o numerically equal to the mean cost function for a
set of arbitrary points selected at random from the model space.

In Figure 2.3 I illustrated various cooling rates for different SA algorithms. For the
sake of simplicity, I set the initial temperatures so that 77 = 1 in all cases. Since 7} is
arbitrary for FA and VFSA, smaller values could have been selected for higher cooling
rates without affecting the convergence proof. In terms of rate of convergence, it is
worthwhile mentioning that too high values for 7 in BA might diminish its efficiency
tremendously. In FA and VFSA one can be much less cautious in selecting the initial

temperature.
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At this point it is necessary to stress the difference, in the VFSA algorithm, between
acceptance temperature, which is associated with the Metropolis criterion, and parameter
temperature, which is associated with the generating function. Even though the cooling
rate for both temperatures is generally the same, the initial temperatures might be dif-
ferent. In the first case, Tp is chosen as described above (mean cost at arbitrary points).
In the second case, Ty; is generally set equal to 1 for all i’s, so that the model space is
sampled widely independently of the initial configuration. These are the methods I will

use for selecting the initial temperatures throughout this thesis.

2.7 Constrained simulated annealing

There are two types of constraints that may arise in nonlinear optimization problems

such as equation (1.1):
e bounding constraints, and
e model constraints.

Any model configuration that satisfies the given constraints, is said to belong to the
feasible region. While configurations not satisfying the constraints are in the infeasible
region. The union of both regions form the model space. Bounding constraints usually
consist of minimum and maximum values for each model parameter (search space). These
constraints are naturally incorporated in VFSA by specifying the ranges for the “random”
perturbation stage in equation (2.9). Whenever a new configuration falls outside the
given ranges, equation (2.9) is repeated until all model parameters fall inside the feasible
region. The incorporation of model constraints is not so direct. Model constraints are of

four types:

1. exact linear constraints,
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2. exact nonlinear constraints,
3. inequality linear constraints, and

4. inequality nonlinear constraints.

The model constraints can be any relationship, explicit or implicit, between the model
parameters. Often they represent a difficult optimization problem on their own. Hand-
ling these four types of model constraints using any optimization algorithm requires
sometimes very different approaches and strategies. But in general, there are two ways
of addressing the resulting constrained optimization problem. One way is to devise an
algorithm able to generate always feasible points in an efficient way. These points are
then checked for acceptance/rejection using the Metropolis algorithm and SA proceeds
as usual. The second approach is to transform the constrained optimization problem
into an unconstrained one by means of penalty terms. During the first stages of the
optimization, model parameters usually are infeasible points, but as iteration proceeds,
they tend to get into the feasible region.

It is not the purpose of this chapter to develop general methods for handling model
constraints with SA, although the literature in these matters is not complete and further
investigation is required. In general, the first of the above two approaches (sampling
from the feasible region) is desirable for nonlinear optimization, for SA concentrates on
decreasing the value of the cost function within the feasible region only and does not waste
the time exploring the infeasible model space. The second approach (penalizing infeasible
points) is perhaps more widely used for its apparent simplicity, though the sampling
may become biased towards undesirable model regions during too many SA iterations.
Moreover, if penalty terms are not chosen properly, the algorithm may get easily trapped

in local minima. Sampling from the feasible region for linear model constraints is in
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general easier than for nonlinear ones, for linear constraints constitute a convez set'.
This convex set can be sampled with no difficulties using a number of techniques (see for
example [BBK*87]). These sampling techniques can be used in conjunction with SA for
generating feasible (random) points. The same algorithms can be extended for nonlinear
model constraints [CH82], but only if they define a convex set. A general technique for
sampling feasible points with arbitrary nonlinear model constraints remains to be found.

Fortunately, particular methods can be devised for the optimization problem at hand,
and a general technique is not always required. In Chapters 4 and 5 I devised some
schemes for dealing with nonlinear model constraints in connection to the two-point ray-
tracing problem via simulated annealing (SART). The model constraint here is that the
raypath must arrive to a given receiver point. The cost function is represented by the
traveltime. It is not obvious which is the feasible region in this problem. Actually, it
corresponds to those take-off angles which generate a ray propagating from the source
to the receiver (in the two-dimensional space defined by the two take-off angles, declina-
tion and azimuth, the feasible region consists of isolated points). Clearly, not only the
constraint is nonlinear, but also the feasible region is nonconvex. If one were able to
sample from the feasible region, the problem would be solved almost immediately. But
this is not possible in general. In SART the feasible region is extended to encompass all
possible take-off angles (within a given range), though not necessarily corresponding to
raypaths with physical sense. However, when traveltime is minimum, the final raypath

satisfies the ray equations from source to receiver.

LA set is said to be convez if it contains straight line segments between any two of its points (see for

example [Rud87]).
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2.8 Conclusions

SA is a very powerful and important tool for optimizing difficult cost functions in a
variety of disciplines. VFSA, a variant of SA, outperforms other SA algorithms in terms
of computational cost. This is achieved by exploring the model space more efficiently
and allowing for fast cooling rates. At the same time, one can be much less cautious for
selecting the initial temperature. Contrarily to simulated quenching (SQ), VFSA strictly
adheres to the sufficient conditions for global convergence. Nevertheless, SQ is a valuable
and valid alternative in terms of its practicality.

Constraints come in two flavors: bounding constraints and model constraints. The
first type is naturally implemented in VFSA, since a search range is specified for each
model parameter. The second type requires a special consideration which may be problem
dependent. Linear model constraints are by far more easily implemented than nonlinear
ones.

It is worth mentioning that there exist in the literature other SA algorithms not
described in this chapter. To name a few I can mention the heat bath algorithm [Rot86],
SA without rejected moves [GS84], mean field annealing [BMT*89], etc. The first two are
intended to reduce the low acceptance to rejection ratio of the standard SA algorithm.
The third one is a SQ algorithm that performs very well when a mean-field theory is a

good approximation to a stochastic cost function?.

2In statistical mechanics, the mean-field theory is based on approximating the stochastic behavior of
large systems of electronic spin elements with complex interactions, by a deterministic set of equations.
In the SA approach, these equations are solved iteratively.



Chapter 3

Wavelet Estimation Using Fourth-Order Cumulant Matching

Models are to be used but not to be believed.
Henry Theil

3.1 Introduction

In this chapter I am concerned primarily with the problem of wavelet estimation via the
4th-order cumulant matching (CM) approach. In essence, the problem consists of estim-
ating, at best, two unknowns from one equation. In the seismic case, as is well known,
the model of the recorded seismic trace, z;, is generally formulated as a convolution plus

additive noise

z(t) = a(t) * r(t) + v(2), (3.1)

where a(t) is the seismic wavelet and r(t) is the reflectivity series.

The CM approach makes use of higher-order cumulants, higher-order covariance func-
tions with special properties. It turns out that, as a result of the convolutional model
which I have described, including additive Gaussian noise, the seismic wavelet can be esti-
mated from the noisy seismogram under the constraint that the reflectivity is a stationary,
non-Gaussian, and statistically independent random process [BR67, LR82, NR87|. Since

the 2nd-order cumulant of a zero-mean process (autocorrelation) is a phaseless function,

29
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and the 3rd-order cumulant is identically zero when the process is symmetrically dis-
tributed (like most seismic reflectivity sequences), higher-order cumulants are needed for
mixed-phase estimation. The information contained in the 4th-order cumulant (a 3-D
function) is enough to determine the wavelet within a polarity reversal and a time shift,
and no assumptions are required concerning the wavelet phase.

Tugnait [Tug87] presented a 4th-order CM method in which a mixed-phase moving-
average (MA) wavelet is estimated from the data 4th-order cumulant, which is generally
an estimate of the wavelet 4th-order moment. Following that work, Lazear [Laz93] pre-
sented a parametric CM method for estimating a mixed-phase wavelet using real seismic
data. The CM problem turns into an optimization problem where a highly nonlinear cost
function is to be minimized. The main purpose of this chapter is to offer an improved
strategy for solving the optimization problem that makes use of a very fast simulated
annealing (VFSA) algorithm [Ing93], reducing the risk of the solution being trapped in
local minima. I also propose a hybrid strategy aimed at a trace-by-trace implementation.
This approach combines the fast performance of a standard linearizing technique with
the reliability of the results provided by VFSA.

I propose the application of a multidimensional taper to smooth the trace cumulant
as a method to provide better estimates even when small amounts of data are used. This
is particularly important because the accuracy of the trace cumulant estimate depends
strongly on the amount of (stationary) data available. The importance of tapering of the
trace cumulant is illustrated by means of both synthetic and field data examples.

Very recently, Hargreaves [Har94] has pointed out that the 4th-order cumulant, like
the kurtosis, may be phase insensitive below a limiting bandwidth. I explore this crucial
aspect of the CM approach and show that, in general, any lag of the 4th-order moment
exhibits the same degree of sensitivity to wavelet phase.

I draw attention to the behavior of the CM method under various non-Gaussian
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reflectivity models that may arise in real situations [WH86]. Here I show various synthetic
examples using as few as 250 data samples and as many as 10,000 data samples. The
results are very encouraging because very good wavelet estimates are obtained for most
models.

Finally I illustrate the improved CM strategy in a trace-by-trace implementation
using both on-shore and marine data. With these examples I demonstrate the viability

of the CM approach even when a small amount of data is used.

3.2 Background theory

3.2.1 Cumulants and moments

Cumulants and moments are higher-order covariance functions with properties that make
them very useful for describing both stochastic and deterministic signals (see for example
[Men91]). Given a real stationary discrete-time random process z(t), t = 0,£1,+2-- -,

its nth-order moment function is expressed by

mi(71, 72, Tno1) = E{z(t),z(t + 1) - 2(t + Tno1)}, (3.2)

where E{-} denotes statistical expectation. In the case of real discrete-time deterministic

finite-length signals, a(t),t = 0,1,---, M — 1, expectations are replaced by sums":

M-1
me(Ti, T2,y Tac1) = D a(t)a(t + 1) - a(t + 7u1). (3.3)
t=
These moments measure the degree of similarity between a signal and a product of delayed

or advanced versions of itself. For example, m$ is known as the “mean” value, m§(r) is

the autocorrelation function, etc.

In practice, higher-order moments are estimated using this formula for both stationary random
processes and finite-length deterministic signals [NP93].
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For n = 3,4, the nth-order cumulant function of a non-Gaussian stationary random

process, z(t), can be written as

(T, Tyt Tno1) = ME(T1, T2y 0y Tno1) — mf(Tl,Tz, S Tao1), (3.4)

where m&(ry, 72, -+,7,_1) is the nth-order moment function of an equivalent Gaussian
random process that has the same mean value and autocorrelation function as z(t).
Clearly, if z(¢t) is Gaussian, ¢Z(71,72, -, Tn—1) = 0. Since there is no clear advantage to
using cumulants for the analysis of deterministic signals, the previous definition applies
only to stochastic processes.

The 1st-order cumulant is equal to the 1st-order moment, which is the mean value.
The 2nd-order cumulant is equal to the covariance, and in the case of a zero-mean
process, it is equal to the autocorrelation. This function is symmetric about 7 = 0
and hence all phase information is lost. As a result and, as is well known, methods
based on the use of the autocorrelation are only capable of identifying a minimum-
phase wavelet from a convolutional process. The 3rd-order cumulant equals the 3rd-
order moment in the case of a zero-mean process (i.e. m$(m,72) =0 for all 71, 7). It is
a 2-D function that preserves phase information in its structure that may be exploited
for system identification. However, when its argument is an independent identically
distributed (IID) random process (such as most reflectivities), it is identically zero. On
the other hand, the 4th-order cumulant of a non-Gaussian stationary signal not only
preserves phase information, but also is nonzero for an IID process. In the case of zero-

mean signal, z(t),

mg (11,72, 73) = mi(r1)my (s — m2) + m3(r2)mi (s — 1) + m3(rs)m3(r2 — 7). (3.5)
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By putting 71 = 79 = 73 = 0 in the previous definitions, we have the familiar quantities

v5 = ¢(0) = E{z*(t)}, (vartance)
v5 = ¢(0,0) = E{z3(¢)}, (skewness) (3.6)
78 = c5(0,0,0) = E{z*(t)} — 3E*{z*(t)}. (kurtosis)

The normalized kurtosis is defined as 7§/(7%)?, and equals zero for a Gaussian process.

3.2.2 Cumulant matching (CM) for a convolutional process

Combining equations (3.1) and (3.4) and assuming that the reflectivity is a non-Gaussian,

independent and IID process, the following important result is obtained [BR67]:

(T, Tyt Tne1) = Yoma(T1, Tay o+ Tno1) + Co(T1, T2y *, Tt ). (3.7)

Since v(t) is assumed Gaussian, its nth-order cumulant is equal to zero. This means that
the approach is blind (in theory) to additive Gaussian noise. Thus, I can rewrite formula

(3.7) for n = 4, as

CZ(TlaTZaT3) = vsz(TlaT2aT3)- (38)

Equation (3.8) expresses the fact that the 4th-order moment of the wavelet, a(t), equals,
within a scale factor, the 4th-order cumulant of the trace, z(¢). In practice, neither the
4th-order cumulant of the noise is zero nor the 4th-order cumulant of the reflectivity is
equal to a spike of amplitude v} at lag (0,0, 0), as expressed by formula (3.8). This is due
to the fact that, despite the assumed stochastic properties of both noise and reflectivity,
usually only a finite amount of data is available. Equation (3.8) is strictly true only for

N — oo. For N finite, one has an estimate of the trace 4th-order cumulant, and the CM



Chapter 3. Wavelet Estimation Using Fourth-Order Cumulant Matching 34

i1s computed in a mean-squared error sense. So I define the following cost function that

relates the wavelet parameters with the estimated trace 4th-order cumulant, ¢§(71, 72, 73):

® =330 [E(m, 7, 78) — vimi(m1, 7, 7)) (3.9)

1 T2 T3

In the optimization algorithm, ® is minimized with respect to the wavelet parameters (the
scale factor 4; can be absorbed by m§$). This method for estimating a moving-average
(MA) system from a convolutional model was first proposed by Lii and Rosenblatt [LR82]
and extended by Tugnait [Tug87] in connection with the identification of an ARMA
(autoregressive-MA) system. Due to various symmetry planes of the 4th-order moment
function and the finite length of the wavelet, the summations in (3.9) are considerably
reduced. It can be proved that all the necessary information is contained in one of 24
regions that compound the total domain of the moment function [PIIF92]. This means
that if we know the moment at any of these 24 regions, we can map across the symmetry
planes and produce the entire 4th-order moment. As a result, it is enough to evaluate
the summations in (3.9) for 0 <7 < M, 0 <71, <7, and 0 < 73 < 75 only, M being
the length of the MA system. Usually, M can be estimated from the autocorrelation

function.

3.3 Optimization problem

Basically, two approaches can be used to minimize ®: (1) a linearizing technique based
on gradient directions, and (2) a stochastic global optimization algorithm. It should be
noted that ®, a multidimensional cost function, is highly nonlinear because it involves
higher-order covariances. It seems reasonable to expect it to be a multimodal function.
In previous works ® has been minimized with respect to the MA parameters using a

steepest descent algorithm. I am not going to consider the linearizing method here, and



Chapter 3. Wavelet Estimation Using Fourth-Order Cumulant Matching 35

the reader is referred to the works of Tugnait [Tug87] and Lazear [Laz93]. However, it is
well-known that this kind of optimization schemes converge to the local minimum which is
closest to the initial model. I have found some numerical examples (I show this below) in
which the linearizing scheme converges to a local minimum which is far from the required
solution. To avoid local minima that may lead to poor wavelet estimates, I propose the
use of a stochastic global optimization algorithm. I use a very fast simulated annealing
(VFSA) technique to solve for the wavelet parameters which are obtained independently
of the initial estimate. Nevertheless, the linearizing technique should not be discarded

because in general I have found that it is faster than VFSA.

3.4 Discussion and explanatory examples

3.4.1 Tapering the cumulant estimate

Since in practice, neither the cumulant of the noise is zero nor is the cumulant of the
reflectivity series a multidimensional spike at zero lag, the estimated wavelet moment
obtained from equation (3.8) is a distorted version of the true wavelet moment. Figures
3.1a and 3.1b show a view of the 4th-order moment of a zero-phase Ricker wavelet and
the 4th-order cumulant of a trace (250 samples) that was generated by convolving a
sparse reflectivity with the wavelet, plus 10% by amplitude Gaussian noise?. Note that
for the lags shown, the trace cumulant is a poor estimate of the wavelet moment. Any
attempt to recover the wavelet using this cumulant estimate will likely fail.

To improve the estimate, I have found it very useful to apply a 3-D smoothing-taper
window to the trace cumulant, especially for those cases in which the cumulant estimate
is very poor due to low amount of data available. In these cases, I can re-define the cost

function as

2The standard deviation of noise was made equal to 10% of the maximum amplitude present in the
data.
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Figure 3.1: Tapering the trace cumulant. (a) Fourth-order moment function of a 25-points
Ricker wavelet. (b) Fourth-order cumulant function of a 250-points trace generated by
convolving the Ricker wavelet with a sparse reflectivity series (plus 10% by amplitude
Gaussian noise). (c¢) The same cumulant function in (b) after the application of a 3-D
Parzen window. (d) Fourth-order cumulant of the trace using 5,000 points. All diagrams
correspond to —12 < 7,75 < 12, and 73 = 0.
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¢ = ZZZ 7-1,72;7-3 04(7-1;7-2’7-3) 7Zm2(7—1a7—2a7-3)]2' (310)

1T T2 T3

where h(71,72,73) is a 3-D window function. Usually, suitable windows are applied in the
case of power spectral estimation and higher-order spectral estimation to produce better

estimates. The window function should have the following properties:

a) h(7'1,7'2,7'3) = h(—7'1,7'2 — 71,73 —7'1) = h(7'1 — T2, T2, T3 —7'2) = h(7'1 — 73,72 — T3, —7'3)
and any possible exchange of any pair of the three arguments (symmetry properties

of the 4th-order cumulant);
b) h(71,72,73) = 0 for |r;| > L [L defines the region of support of ¢§(m1, T2, 73)];
c) h(0,0,0) = 1 (normalizing condition);

d) H(wi,ws,ws) > 0 for all frequencies (wy,w2,ws).

It is easy to build multidimensional windows satisfying these constraints by using standard

1-D windows (see for example [NP93]). So I can write

h(11,12,73) = d(71)d(72)d(73)d(T2 — T1)d(T3 — T2)d(T3 — T1) (3.11)

where d(7) = d(—7); d(t) = 0, 7 > L; d(0) = 1 and D(w) > 0 for all w. Among many
possible 1-D windows (Hamming, triangular, etc.) I have obtained very good results

using a Parzen window, which is defined by
1—6(|7[/L)* +6(|7|/L)*, |r| < L/2;

a(r) = { 21 = |+ |/LY, L2 <l < L (3.12)
0, |7| > L.
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Figures 3.1c and 3.1d show the trace cumulant after applying a 3-D Parzen window and
the trace cumulant when using 5,000 data samples. Observe that the improvement due
to the tapering is quite important. This obviates the use of large amounts of data where
the validity of convolutional stationarity is very much in question. I have found that
the CM method can be applied even for a trace-by-trace implementation, and in many
cases only a few traces are required to obtain cumulant estimates good enough to provide

reliable wavelet estimates. In the last section I illustrate this point using a small set of

field data.

3.4.2 VFSA vs linearizing solutions: a hybrid strategy

The reliability of the derived wavelets depends not only on the degree of validity of
equation (3.8), but also on the success in the minimization of the multidimensional,
nonlinear, and possibly multimodal cost function ®. Hargreaves [Har94] proposed a
procedure to assess the reliability of the derived wavelets that consists of applying a
90-degree phase shift to the data and verifying whether or not the new wavelet estimate
exhibits the same phase shift. However, a procedure to assess the reliability of the
optimization solution is still required. In his steepest descent algorithm, Lazear [Laz93]
starts the iterations with a centered spike as the initializing wavelet. The results obtained
by Lazear show that the solution is rather consistent and good estimates are obtained in
all the examples shown.

I have found that the VFSA approach generally provides an increased confidence
in the solutions. As an example, Figure 3.2a shows a synthetic trace consisting of 250
points (At = 4 ms), generated by convolving a mixed-phase Berlage wavelet [Ald90] with
a sparse reflectivity series. The trace has been contaminated with 10% by amplitude
of Gaussian noise. In Figures 3.2b to 3.2d the true wavelet as well as the solutions

obtained after minimizing ® are plotted (20 realizations using different noisy traces). In
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this particular example the linearizing solution has been trapped in a local minimum
of the cost function®, while the VFSA algorithm was able to recover the actual wavelet
more accurately. Finally, Figure 3.3 shows the deconvolved traces using the wavelets in
Figures 3.2b to 3.2d, as well as the corresponding error curves. The deconvolution was
simply done by spectral division (see the book of Robinson and Treitel [RT80] for an
excellent treatment of the deconvolution problem). Though data are very band-limited,
a quick view at the error curves shows that the SA solution is a better estimate to the
true wavelet.

It should be pointed out here that for annealing (and not quenching) the CPU time
required to find the VFSA solution is substantially greater than that required to find
the linearizing one. In the example of Figure 3.2, about 20 iterations were required
using the steepest descent approach. Each iteration involved the computation of the
current wavelet moment function, its gradient and the step size, as well as updating the
wavelet estimate. On the other hand, the VFSA solution required about 1,000 iterations,
where each iteration involved basically computing the cost function and perturbing the
wavelet estimate. In terms of CPU time, the linearizing approach took about 1.1 seconds
for 20 iterations on a Sun Ultra 1 workstation, and VFSA about 4.0 seconds for 1,000
iterations. This implies that each linearizing iteration was about one order of magnitude
more expensive than each VFSA iteration. When quenching is performed, the number of
iterations may be reduced substantially, and the CPU time becomes comparable to the
linearizing optimization.

In a trace-by-trace processing, CPU time is a very important aspect that has to be
taken into account. A strategy for an efficient implementation in real situations may be

to apply the VFSA algorithm to a single trace and use this estimate as the initial model

3As suggested in the previous work, I set the initial guesses for the linearizing approach equal to a
centered spike. The fact that the true wavelet contains two main lobes made the method to converge to
a local minima. The global minimum might have been obtained using a different starting model.
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Figure 3.2: Synthetical example: linearizing vs VFSA solutions. (a) Reflectivity series
and trace. (b) Actual wavelet. (c) Linearizing wavelet estimates (20 realizations). (d)
SA wavelet estimates (20 realizations).

for the remaining traces where the linearizing algorithm can be used. This procedure
combines the fast performance of the linearizing technique with the more reliable solutions
provided by the VFSA algorithm. At the same time, the risk of being trapped in a local
minimum when using the linearizing technique is reduced (if not eliminated) because a

reasonable initial model is now used.

3.4.3 Sensitivity to wavelet phase

The sensitivity of the zero-lag 4th-order cumulant (kurtosis) to wavelet phase has been

studied by various authors in connection to the estimation of a residual phase-shift present
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Figure 3.3: Synthetical example: deconvolved traces and error. Deconvolved traces using
(a) the actual wavelet, (b) the average SA wavelet, and (c) the average linearizing wavelet.
(d) Difference between series (a) and (b). (e) Difference between series (a) and (c).

in the data by maximizing the kurtosis or the varimax norm [Whi86, LO87|. It turns
out that if the data effective bandwidth, B, is small compared to the central frequency,
fo, the kurtosis (and hence the varimax norm) is rather insensitive to phase changes.
Fortunately, most seismic data satisfy B > f, and the maximum kurtosis criterion is
widely used in seismic processing.

In order to perform a more detailed bandwidth study, I have extended the analysis
to other lags of c§(71,72,73). For this purpose, I generated a passband-type wavelet by
subtracting two low-pass filters with cut-off frequencies f; and fp:

sin(27 fit)

a(t) = 2thfht —2fi

sin(27 fit)

on it = 2Bsinc(w Bt) cos(27 fot), (3.13)

where B = f,, — fi and fo = (fi + fn)/2. I then computed phase-shifted versions of the
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wavelet, a.(t), which are related to a(¢) by the formula

ac(t) = cos(€)a(t) + sin(e)H{a(t)}, (3.14)

where € is the phase-shift and H{-} is the Hilbert transform [AR80]. To determine the
sensitivity of any lag of m3°(71, 72, 73) to a phase-shift € in the range [0, 7], I define the

quantity

Su(ry oy my) = (XA (Tl;;;;:ﬁ;(gmg é)"}“ (o 00w, (3.15)
€ 4 » Yy

This quantity expresses the variation of my® relative to the maximum kurtosis between
the maximum and minimum values when € varies in the range (0, 7). Figures 3.4a and
3.4b show a plot of S, as a function of B and f, for lags (0,0,0) and (3,3,3). Note
that greatest sensitivities (around 50%) of both moment lags are attained when B ~ 2f,
(which implies that the bandwidth extends to zero frequency). On the other hand, for
B < fo both moment lags are rather insensitive to a phase-shift. That is, the greater
the bandwidth relative to the central frequency, the greater the sensitivity. Moment lags
different from that corresponding to the kurtosis, show a similar sensitivity to phase-
shifts. In general, the same behavior can be expected for other wavelets.

The above analysis demonstrates the data requirements for a meaningful maximum
kurtosis deconvolution or 4th-order CM. In the presence of noise, the effective bandwidth
of the signal may be reduced and hence the sensitivity of m, to wavelet phase will
be also reduced. Levy and Oldenburg [LO87] recognized the importance of the low
frequencies for the varimax norm to be sensitive to wavelet phase. To increase the effective
bandwidth, whitening the data is recommended. This can be done by applying a zero-

phase deconvolution. On the other hand, Hargreaves [Har94] proposed the application
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Figure 3.4: Fourth-order moment sensitivity to wavelet phase. (a) Sensitivity for lag
(0,0,0) (i.e. kurtosis). (b) Sensitivity for lag (3,3,3). Below a critical bandwidth relative
to the central frequency (B < fo), the 4th-order moment is insensitive to wavelet phase.
Maximum sensitivity is attained when the frequency content extends to zero frequency

(B =~ 2fo).

of AGC (automatic gain control) to the signal, before wavelet estimation, to improve
the SNR (signal-to-noise ratio) and hence the effective bandwidth. He showed that the
reliability of the results of the CM method are considerably improved after the application
of this simple preprocessing.

In summary, the sensitivity of the moment function to wavelet phase has been demon-
strated for wavelets with different frequency contents. I showed that, on average, m, is
as sensitive as the kurtosis to lags other than that at the origin. If B < f; both max-
imum kurtosis deconvolution and the 4th-order CM method will likely yield unreliable
results, particularly for low SNR. In these critical cases, the results can be improved by
applying either AGC and/or zero-phase deconvolution prior to wavelet estimation. It is

also recommended that errors in the low frequency portion of the spectrum arising due
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to spectral windowing (see [Tho82, Wal90]) are reduced as much as possible during the

processing sequence prior to wavelet estimation.

3.4.4 Non-Gaussianity assumption

Various authors have established that the primary reflectivity series can indeed be modeled
as a non-Gaussian process [WH86]. The distribution appears to be essentially symmetric
with a sharper central peak and larger tails than that of a Gaussian distribution. These
kind of distributions are called leptokurtic because the normalized kurtosis is greater than
the kurtosis of a Gaussian distribution which is zero. This is the basis of the so-called
minimum entropy deconvolution (MED) approaches where a spiky reflectivity is expected
(see [Wal85] for a comprehensive discussion of several MED-type algorithms in connec-
tion with the non-Gaussianity assumption). The 4th-order CM approach is particularly
effective when the reflectivity probability density function (pdf) is far from Gaussian.
The sensitivity of the CM method to certain types of reflectivity models has been
tested in [Laz93]. In this work, the models consist of a Gaussian reflectivity raised to
a power, v, greater than one, preserving the sign (Gaussian-y model). If y, is the k-th
sample of a zero-mean Gaussian process, then the actual reflectivity coefficient, r, is

obtained by

re =y e, > 1 (3.16)

These models have leptokurtic pdf’s and it is this non-Gaussian nature that is observed
in well-log data. Here, I consider also other kinds of reflectivity models: one that is
essentially sparse, and one that has been proven to fit very well the empirical amplitude
distribution of block-averaged well logs. The first one can be described by a Bernoulli-
Gaussian process [KM78, GR81] with pdf
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Figure 3.5: Non-Gaussianity assumption. From top to bottom, subsequent rows cor-
respond to Bernoulli-Gaussian, Laplace mixture, and Gaussian-y models. (a,b,c) Nor-
malized cost function for the different models. This quantity expresses the matching
between the true wavelet moment and the corresponding trace cumulant. (d,e,f) Cor-
relation between each wavelet estimate and the actual wavelet for the different models.

(g,h,1) Correlation versus kurtosis for the different models.
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fr) =

0 with probability A
(3.17)

N(0,02) with probability 1 — A,

where N(0, ¢2) denotes a zero mean Gaussian distribution with variance o2, and 0 < X <
1. The normalized kurtosis can be easily computed and is equal to 3/(1 — A) — 3. For
obtaining realistic reflectivity models, A ranges typically from 0.7 to 0.9, corresponding
to models consisting of reflections of 1 in 3 samples (kurtosis=7), to 1 in 10 samples
(kurtosis=27), approximately.

The second model (perhaps the one that is closest to a real reflectivity sequence from
the point of view of stratigraphic considerations) is that in [WHS86]. In this paper it
is shown that real primary reflectivity sequences can be modeled as a mixture of two
Laplace (or double-sided exponential) distributions:

ﬁe‘l’"'/)‘l with probability p

f(r) = { (3.18)

ie—lrl/*z with probability 1 — p,

where A; and A; denote the scale parameters of each population and p the proportion of
the mixture, 0 < p < 1. This alternative model makes very clear the distinction between
sedimentary beds and lithologic units by simply changing the proportion of the mixture.
Such a model has normalized kurtosis 6(1+c¢) — 3, ¢ > 0, which is always greater than or
equal to 3 (here cis a function of p, A; and Ay only [WHS86]). Several well-log data sets
were fitted using this flexible model, and in all the cases shown in the aforementioned
work, the results indicated a kurtosis exceeding 3.

I generated several reflectivity sequences according to the three models (i.e. Gaussian-
v, Bernoulli-Gaussian, Laplace mixture) using various parameters. The models were
intended to reproduce real reflectivity sequences and the purpose was to test the ef-

fectiveness of the CM method to recover the true wavelet for the various models using
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different amounts of data. A zero-phase Ricker wavelet was used to generate each seismo-
gram, and 10% by amplitude Gaussian noise was added. Figures 3.5a to 3.5c illustrate
the results of computing the normalized mean-squared error between the trace cumulant

estimate and the true wavelet moment:

27'1 iT2,T3 [02(7-1’ T2, T3) - amZ(Tla T2, 7'3)]2

ETl yT2,7T3 [cz(T]-? T27 T3)]2 ’

MSE =

(3.19)

where a 1s a constant that minimizes M SE. Also, I have computed the correlation of
the estimated wavelets with the true wavelet, which is shown in Figures 3.5d to 3.5f. As
expected, the matching increases with the amount of data. In general, good estimates
were obtained even for models with small kurtosis and a relatively small amount of data
(correlations exceeding 0.95 were obtained for most of the cases). For sparse models, I
have found excellent results using as few as 250 samples. In Figures 3.5g to 3.51 I have
plotted the effective kurtosis (as computed from the reflectivity series) versus wavelet
correlation for models using 1,000 and 10,000 data samples. It is interesting to note that
there is not a rigorous correlation between kurtosis and accuracy of results. This may
be true only for some specific models (e.g. the Gaussian-v) since the results appear to
depend on the manner in which the wavelet interferes with the structure of the hidden
reflectivity coeflicients. For example, consider Figure 3.51 corresponding to the Gaussian-
~ model. The higher the kurtosis, the higher the correlation between true and estimated
wavelets. This is not the case for Bernoulli-Gaussian and Laplace models (Figures 3.5g

to 3.5h).
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3.5 Real data examples

3.5.1 Field data

In this example, the field data I used are shown in Figure 3.6a. The window con-
sists of 21 traces, from 1.0 to 2.0 s. To illustrate the trace-by-trace process, I obtained
an individual wavelet estimate for each trace and then averaged the optimally shifted
estimates to obtain an average estimate. Only 250 samples were used to obtain each
individual estimate. The consistency obtained in this example is clear from inspection of
the individual estimates plotted in Figure 3.7a. The average estimate is shown in Figure
3.7b. If all data are used simultaneously to estimate the trace cumulant, the wavelet in
Figure 3.7c 1s obtained. This is very similar to the wavelet obtained after synchronizing
the individual wavelets.

To assess the reliability of the wavelet estimate I deconvolved the original data by
spectral division using the average estimate. The “zero-phase” section is shown in Figure
3.6b. These data were in turn used to obtain the residual wavelets which are shown in
Figures 3.7d to 3.7f. As expected, the residual wavelets are very close to zero-phase, a

fact that demonstrates the reliability of the wavelet estimate.

3.5.2 Marine data

The real data in this example come from a marine section which had been processed
carefully for impedance recovery. Figure 3.8a shows the 24 traces (325 samples per
trace) used for wavelet estimation. The 24 individual wavelet estimates are shown in
Figure 3.8b. The average wavelet estimate, after the hybrid trace-by-trace strategy and
stacking the wavelets in panel (a) of the same figure, is illustrated in Figure 3.8¢c. As
expected, due to the pre-processing steps employed, the recovered wavelet is very nearly

zero-phase. Finally, the wavelet shown in Figure 3.8d corresponds to the estimate using
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Figure 3.7: Field data example: wavelet estimates. (a) 21 individual wavelet estimates of
the section shown in Figure 3.6a. (b) Average wavelet estimate after synchronizing and
stacking all the individual estimates. (c) Wavelet estimate using all data simultaneously.
(d), (e), and (f) residual wavelets corresponding to the zero-phased section in Figure

3.6b.

all data simultaneously.

3.6 CM in the frequency domain

In as much as the information contained in the autocorrelation sequence is essentially
present in the power spectrum, so the information contained in higher-order moments
and cumulants is present in polyspectra (higher-order spectra). This duality is estab-
lished upon the polyspectra definition. Polyspectra are defined, naturally, as the Fourier

transform of the corresponding time domain sequence. For instance, the bispectrum
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Figure 3.8: Marine data example. (a) Section of data used in the trace-by-trace CM
wavelet estimation. (b) 24 individual wavelet estimates. (c) Average wavelet estimate.
(d) Wavelet estimate using all data simultaneously.
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(third-order spectrum) is defined to be the Fourier transform of the third-order cumulant
sequence, and the trispectrum, which is the fourth-order spectrum, is defined to be the
Fourier transform of the fourth-order cumulant sequence. It is worthwhile to make a dis-
tinction between two types of polyspectra: (1) cumulant spectra, which are particularly
useful in the analysis of stochastic processes, and (2) moment spectra, which are of great
importance in the analysis of deterministic signals.

Since we are interested in fourth-order statistics, let z(¢), ¢ = 0,£1,4+2---, be
a real stationary discrete-time random process with fourth-order cumulant sequence
¢5(71,72,73). Then, the 4th-order cumulant spectrum (trispectrum) of the process z(t) is

defined as the 3-D Fourier transform

+oo +oo +oo
Ci(wy,wa,w3) = Z Z Z c3(11, 72, 73) exp[—j(w1T1 + waTe + w3T3)], (3.20)

TI=—00 T2=—00 T2=—00

where |w;| < 7 fore=1,2,3, and |w; + ws + w3| < 7 [Bri65]. In general, CF (w1, w2, ws) is
complex, and it is periodic with period 27 in each dimension. Many symmetry properties
can be derived due to the fourth-order cumulant definition. As a result, there is a lot of
redundant information in the cube |w; + w2 + w3| < 7 (see for example [PIIF92]).

In the case of real discrete-time deterministic signals, a(¢), the fourth-order moment
spectrum is defined as the Fourier transform of the fourth-order moment sequence. A
more compact and interesting expression can be obtained in terms of the Fourier trans-

form of the signal, A(w), after manipulating algebraically the corresponding definitions:

M (w1, ws,ws) = A(w1)A(w2)A(ws) A" (w1 + wa + w3), (3.21)

where |w;| < 7 fori=1,23; |w; + wz + w3| < 7, and “*” denotes conjugate. In terms of

magnitude and phase, equation (3.21) is equivalent to
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{ | M (w1, w2, ws )| = |A(wr)|[Awz) || A(w2)|[A(wr + w2 + ws))|
(3.22)

\IIZ(wlaw2aw3) = ¢a(w1) + ¢a(w2) + <,75a((-‘)2) - (]5((.01 + wa + W3),

where |A(w)| and ¢,(w) are the magnitude and phase spectrum of the signal a(t), respec-
tively.
Back to the wavelet estimation problem, taking Fourier transform to equation (3.8)

for N finite yields

éf(wl,wz,w;;,) ~ v A(wr) A(ws) A(ws) A% (w1 + w2 + ws), (3.23)
where A(w) is the Fourier transform of the seismic wavelet. This expression states that
then trispectrum of the trace approximates, within a scale factor (and a linear phase
shift), the fourth-order moment spectrum of the wavelet. In this context, there are several
methods in the literature for recovering the signal from high-order spectra. These include
phase recovery algorithms [LR82, MU84], phase and magnitude recovery algorithms, etc.
(see for example [NP93|, Chapters 6&7, for a concise description of various methods).
One of such methods is based on the least squares optimization of the following cost
functions:

{ (I)phase = Ewl sz Ews [‘i’f(whwz,ﬁ%) - \IIZ(wl,wz,w3)]2 (3‘24)
B pmagnitude = Lun Sy Lo, [|CF (w1, wa, w3)| — 75| M (wr, wa, ws)[]?

where \ilz(wl,w2,w3) and |Of(w1,w2,w3)| are estimated from the data. These cost func-
tions establish the duality between the CM in the time domain and the CM in the
frequency domain. Once \ili’f(wl,w%w?,) and |éf(w1,w2,w3)| are estimated, VFSA can
be applied to minimize the sums with respect to the wavelet spectral coeflicients. Al-

ternatively, the cost functions may be written as the squared error between the real and
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imaginary parts of data and wavelet polyspectral coefficients. Though not tested here,
the results in the frequency domain are expected to be (apart from multidimensional
unwrapping and other computational issues that may arise) similar to the results in the
time domain, for the information present in the polyspectra is essentially contained in
the corresponding higher-order cumulant or moment sequence, as mentioned in the first
paragraph of this section.

Finally, it is worth mentioning that an alternative and elegant approach is to use
the cepstrum of higher-order cumulants (polycepstra), and in particular the tricepstrum
[SVU98]. This method allows one to obtain the wavelet coeflicients analytically from the
estimated tricepstrum of the data. The analysis of these techniques is beyond the scope

of this work.

3.7 Conclusions

1. The VFSA optimization should be seen as a method for assessing the reliability of
the numerical solution, and a way to provide consistent results regardless of the
initial model used in the optimization process. This leads to a hybrid strategy that
combines the fast performance of the linearizing technique with the reliability of

the VFSA solution.

2. Limited effective bandwidth and missing low frequencies in the recorded data reduce
the 4th-order cumulant sensitivity to wavelet phase. This effect may be partially
compensated by either whitening the data or performing AGC before carrying out

the wavelet estimation.

3. It is assumed that the reflectivity is a non-Gaussian process. This assumption
appears, in fact, to represent a property of the earth’s reflectivity. Further, if

the reflectivity is also somewhat sparse, which is not an unreasonable expectation,



Chapter 3. Wavelet Estimation Using Fourth-Order Cumulant Matching 55

the CM method may be used with confidence with relatively short data segments.
In these cases, the application of a multidimensional taper to smooth the trace

cumulant estimate and improve the matching, is strongly recommended.

4. The combination of both the hybrid strategy and a convenient multidimensional
tapering, permitted us to develop an efficient and consistent trace-by-trace imple-
mentation. Numerical consistency is achieved by the VFSA algorithm and tapering,

CPU efficiency is attained by the fast performance of a linearizing technique.

5. Despite the inherent limitations of the CM method due to bandwidth content and
amount of data available, the results obtained both with synthetic and real data
demonstrate not only the viability of the method, but also the reliability of the

convolutional model which is at the heart of wavelet estimation philosophy.



Chapter 4

Two-Dimensional Boundary Value Ray Tracing

Begin at the beginning...and go on till you come to the end, then stop.

Lewis Carroll — Alice’s Adventures in Wonderland

4.1 Introduction

Ray tracing plays a key role in seismological studies. Large attention has been devoted
to the initial-value problem (IVP), in which the ray is specified by the initial conditions:
initial point and initial direction of propagation (take-off angle). The IVP is in general
a well resolved problem (see for example [Cer87]). However, geotomographic methods
and earthquake location usually require precise traveltime and trajectory computations
of seismic waves propagating between two fixed points in an laterally heterogeneous
medium. This represents a boundary-value problem (BVP) because the ray is not only
specified by the initial conditions. In a more general case a ray may be specified by more
complicated boundary conditions at different points of its trajectory. Such is the case of
ray tracing reflected or headwaves connecting two fixed points.

Traditionally, there are two techniques to find the raypath of a seismic wave propagat-
ing between two points in a heterogeneous medium: shooting and bending [JG77, AR80].
The method of finite-differences [Vid88] has become widely used especially for dealing
with smooth velocity fields. The first arrival traveltimes field is first calculated at all
nodes of a gridded model, and then raypaths are traced by following the wavefront nor-

mals. Most of these techniques perform very well for the particular type of velocity model

96
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they were devised for. But in general they are applicable to a limited class of models,
and the more complex the media, the more obvious become their limitations. Other
techniques include graph theory methods, recently developed for obtaining the shortest
paths in a gridded model [Mos89, FL93]. Though these methods work well for moder-
ately complex 2-D media, their applicability for dealing with complex 3-D structures has
not been studied thoughtfully, especially because it becomes computationally very much
involved when a certain accuracy is required.

In this chapter I develop a new ray-tracing method for solving the BVP through a het-
erogeneous 2-D medium. Although a more general technique for solving the BVP through
an arbitrary 3-D medium will be developed in next chapter, the ray-tracing method will
be called “simulated annealing ray tracing” (SART) throughout. The purpose of SART
is to overcome the usual deficiencies of shooting and bending for solving the BVP. The
philosophy of the method is to put the BVP into a convenient optimization framework
which is in turn solved by means of an efficient simulated annealing algorithm like VFSA.
In the two-point ray-tracing case, SART is an iterative procedure that attempts to find
the optimum take-off angle corresponding to the raypath with minimum traveltime con-
necting any given source-receiver pair [Vel96]. The main advantage of SART lies in the
fact that it overcomes the problem of multipathing inasmuch as convergence to the abso-
lute minimum traveltime is statistically guaranteed. This is demonstrated by a number
of synthetic examples where not only direct waves are traced, but also reflected (including

normal rays) and headwaves.
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Figure 4.1: Two-dimensional cell parameterization. The velocity field is piece-wise con-
stant. The function z = f(z) represents a reflector/refractor.

4.2 Earth model

The modeling of a complex geology in a way that it can be input and easily manipulated
by a computer program is not a trivial task. Usually, it is more difficult and time consum-
ing to devise a mathematical method for representing real velocity fields than devising
a method for tracing rays through it. Fortunately, some simple forms of parameteriza-
tion can approximate very well real subsurface velocity structures for the purpose of ray
tracing and understanding of the method.

In the 2-D case I use a cell ray-tracing method which is fast and accurate for the

purposes of this work. This kind of parameterization requires the velocity field to be
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represented by rectangular cells of constant velocity and fixed size. The model consists
of N, by N, rectangular cells of size Az by A, which define N, +1 by N, + 1 cell
nodes (Figure 4.1). Node (1,1) has coordinates (Zmin, Zmin) as shown in the Figure. The
two-dimensional velocity field is represented by v = v(z, z), where z stands for offset
distance and z for depth (positive z-axis points downwards). Velocity v may correspond
to either P- or S-wave velocity of propagation. Each rectangular cell is assigned the

velocity corresponding to the upper-left node, thus

Vij = U [@min + (2 — 1) Az, 2imin + (§ — 1)AZ], t=1,---,Ny; j7=1,--- N,. (41)

Additionally, a predefined interface z = f(z) can be superposed for tracing reflections
or headwaves as will be described later. Although this way of representing the velocity
field presents some limitations for tracing particular raypaths (e.g. turning rays), the
simplicity associated with the geometry of the ray trajectory makes it attractive. The
raypath will be composed of a series of segments honoring Snell’s Law at each cell bound-
ary. In the next chapter, a more flexible and general model parameterization will be

proposed.

4.3 Solving the initial-value problem (IVP)

4.3.1 Two-dimensional cell ray tracing

Before describing the BVP it is essential to describe the IVP for the model parameteriza-
tion at hand. To solve the IVP I use a cell ray-tracing scheme where the velocity within
each rectangular cell is assumed to be constant. Both traveltime and ray trajectory are

to be found. The ray is propagated using Snell’s Law at each cell boundary, and thus it
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i1s composed of a number of segments. Intersection points and angles are obtained using
simple geometrical relations as will be described in the following paragraphs.

Four cases can be distinguished according to which edge the ray enters a given cell:
left, top, right or bottom. I will describe the first case only, since the others follow a
similar reasoning. Let us suppose the ray enters cell (7, j) from left edge at point x, =
(zk, 2k ), as shown in Figure 4.2a, where k denotes the k-th point in the ray trajectory. The
next point will lie either on the top, right or bottom edges of the current cell, depending

on the angle 6y and the cell geometry:

0 <0, <y, Dbottom,
©Ya < 0, < ©b I‘ight, (42)

wp < b <m top.

where angles ¢, and ¢, are computed using

ZmintJiAz—zp ]
)

—
pa = 5 — arctan [ s

2

(4.3)

zk—zmin—(j—l)Az]

0w
@p = 5 — arctan [ yov

2

The three subcases are depicted in Figures 4.2b to 4.2d, and the formulas required to
compute coordinates (Zji1, 2k+1), angle Ory1, and traveltime within the current cell are
summarized in Table B.1.
Snell’s Law is applied at point Xgy1 = (Zg+1, 2k+1) to determine the next direction:
sin @ SIN Qgqq

= , 4.4
Vk Ve+1 ( )

where ap and oy, are the angles between the ray trajectory and the normal to the
corresponding cell edge, and vy and vy are the velocities at opposite sides. For example,

in the case of Figure 4.2b,
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Figure 4.2: Detailed geometry of a ray entering cell (¢,%) from the left edge. (a) The ray
enters at point x; which determines angles ¢, and ¢. (b), (c) and (d) Depending on
O resulting from Snell’s Law, point Xz, is then computed. See Table B.1 and text for
details.

ak:7r—9k,

Qpy1 =T — 9k—|—1;
(4.5)

Ve = ’Uij,

V41 = V4,5-1-

This process is repeated until the ray exits the model boundaries or crosses the pre-
defined discontinuity, where a special attention must be paid. Finally, total traveltime

1s computed as the sum of all the individual contributions corresponding to each ray
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segment:

T =)t (4.6)

k

Figure 4.2 illustrates one of the four possible cases: x; lying on the left edge of the
cell. As a result there is a total of twelve subcases depending on the location of x; and
the angle 6. I will not describe them all here. The reader is referred to Appendix B
where all the required formulas are summarized.

In summary, starting from the source, xo = x,, a sequence of segments is generated
according to simple geometrical relations and Snell’s Law at cell boundaries or predefined
discontinuities. At each step, it must be determined which edge of the cell the ray comes
from, so that one of the four mentioned cases is applied. Also, each segment of the
ray which is being computed must be checked to see whether it crossed the predefined

reflector (or refractor) z = f(z).

Special cases

A distinction must be made whenever the current point lies within the cell boundaries
(e.g. when the source does not lie exactly on some cell edge), and when the ray trajectory
arrives at some predefined discontinuity (e.g. a reflector). These situations are depicted
in Figure 4.3a and 4.3b respectively. In the first case, it is possible to use the same
formulas as in the normal case (Table B.1) by simply exchanging Az by Az’ = iAz — z;,
as shown in Figure 4.3a. In the second case (Figure 4.3b), a more elaborate situation
must be considered. After shooting from x; with angle 6, as usual, the auxiliary point
X}, i1s determined. If a reflector crossing is detected, the intersection point xz1; should
be obtained becoming the next point in the ray trajectory. At this point, Snell’s Law of

reflection (or refraction if required) is applied and angle 61 so determined. Now, the
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Y

Figure 4.3: Special cases of the ray geometry. (a) Shooting from inside-left a given cell

(7,7). (b) The ray meets a reflector at point xz;; and travels towards point X, o after

undergoing a reflection.

propagation continues as in the case of Figure 4.3a. When a refraction is requested at

this intersection point, the velocity on either side of z = f(z) is generally different. This

means that some cells have two velocity values up and below the predefined refractor.
The reflector (or refractor) z = f(z) is approximated by a straight line within each

cell so that the intersection with the raypath is found in one step. After some simple

geometrical relations, the coordinates of point x4, are determined with

B o zp— f(zr)
{ Trp1 = Tk + (Thyq mk)f(m;i+1)—kf(“3k)iz;c+1+zk, (4.7)

Zet1 = f(@ry1),

which are the coordinates of the intersection point between the raypath segment connect-
ing xj, with x_,, and the reflector (or refractor) segment connecting f(xx) with f(x},,)
respectively. An iterative procedure (not assuming the reflector/refractor is a straight
line within each cell) to find the intersection point could also be tried. But the approx-
imation made is accurate enough for the purposes of this work, provided the reflector

(refractor) is a smooth function and the number of cells is relatively large.
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Ray signature and stopping conditions

It is also required to define a sort of ray signature at the beginning of the process to
make a decision after function z = f(z) has been crossed. Having defined the ray signa-
ture, it is possible to trace ray conversions by using different velocities after a reflection
(or refraction) has occurred. For example, a ray signature may be simply assigning a
series of binary numbers JOP(I), I = 1,2,---, associated with the discontinuity. These
numbers are expressed as decimal integer values. Index [ indicates the number of times
the discontinuity is met, thus allowing for more than one reflection, refraction and/or
conversion at different points of the same discontinuity. For example, the first time the
discontinuity is met, the number JOP(1) is used to make the decision, the second time,
IOP(2), etc. Each bit of JOP(I) may be either 0 or 1. The first bit is reserved for
existence of the discontinuity, the second for refraction, the third for reflection, and the
fourth for phase conversion. A “0” means to ignore the corresponding event, and a “1”
means to follow the directives. Table 4.1 shows the decisions to make according to each
bit value.

As an example let JOP(1) = 13 (binary 1101) and /OP(2) = 1 (binary 0001).
The first time the discontinuity is met, the ray is requested to undergo a reflection and a
change of phase. If by chance the discontinuity is met again, the propagation is requested
to stop. If refraction is required setting bit 2 to 1 instead, but a total reflection occurs,
the propagation is required to stop by default. In the case a discontinuity is not defined
or IOP(I) is set to 0, the propagation ends when point X lies on some model boundary
(i.e. k41 = Tmaz and/OT Zk11 = Zmaz), When k > Kz, or when T > T4, where Kpas

and T),,, are user-predefined values.
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bit 0 1
1 ignore z = f(z) do not ignore z = f(z)
2 no refraction refraction
3 no reflection reflection
4 | no phase conversion phase conversion

Table 4.1: Decision table indicating what to do when discontinuity z = f() is met at
some point of the ray trajectory. See text for explanation.

4.3.2 Pros & cons of cell ray tracing: a discussion

As already mentioned, cell ray tracing with piecewise constant velocity presents some
limitations, especially for tracing turning rays. The problem arises when at a certain
cell edge a total reflection occurs due to large incident angles. As a counterpart, the
method is computationally inexpensive, simple and accurate enough for the purposes of
illustrating the two-point ray-tracing method that will be described in next sections. The
total reflection is artificially introduced by the cell parameterization, because of the first-
order discontinuities in the velocity that are generated (Figure 4.4a). The question is
how to deal with large incident angles that may certainly occur. The answer would be to
try to eliminate first-order discontinuities. First-order discontinuities may be eliminated
by using nonconstant velocities within each cell. For rectangular cells, the simplest form

which admits analytical solution and ensures continuity is the quadratic slowness:

v_z(cc, z)=a+bz+ cz+ dez, (4.8)

where a, b, ¢ and d are constants [Cer87]. Clearly, the ray trajectory would be no
longer composed of a series of straight segments. Although the shape of the ray for
a velocity function as given in equation (4.8) is known, the computational cost and

coding complexity would be much greater than using piecewise constant velocities because
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Figure 4.4: (a) Total reflection occurs when the angle o, > a°, where a° is the critical
angle derived from Snell’s Law: sin a® = vg/vgi1, Uk < vgs1. This is a fictitious reflec-
tion introduced by the cell parameterization. (b) A method to eliminate the fictitious
reflection in (a). The cell with velocity vgy1 is subdivided into two smaller cells, one of
them with velocity v,’c_H = (Vg + Vk41)/2 < k41, which makes the new critical angle, ac',
smaller. As a result ay < a° and a refraction occurs.

trigonometric and hyperbolic functions are involved. Alternatively, triangular cells could

be used. Now

v(z,2) = a+ bz + cz, (4.9)

is the simplest form of velocity which ensures continuity. The raypath is an arc of a

circle, which also leads to more expensive computations than using straight segments.
However, in the case of piecewise constant velocity cells, if the velocity field is smooth

and the size of the cells is relatively small, total reflections do not represent a serious

problem. In this case total reflection would occur only for incident angles close to 90
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degrees. This issue does not mean that the velocity field must be smooth for the cell
ray-tracing scheme to be an accurate procedure. Jumps in the velocity model can be
introduced without loosing accuracy provided that these velocity jumps coincide with
cell boundaries. Besides, additional discontinuities of arbitrary shape can be introduced
through function z = f(z) as a refractor, as shown in this section. So far the method I
have developed allows only one function z = f(z) to be defined, but more than one could
be similarly introduced for greater flexibility in modeling complex structures.

The use of smaller cells would obviously increase computational cost, but not in the
same measure as in the case of nonconstant velocity cells. An alternative not tested in
this work would be to use some kind of adaptive gridding so that cells are larger where
velocity is smooth, and smaller where velocity varies rapidly. This can be done only at
those cells where a total reflection has been detected. At this point the cell is subdivided
into smaller cells until a refraction occurs, as illustrated in Figure 4.4b. However, this
scheme does not eliminate the problem at all. Suppose the velocity increases linearly
with depth and a ray is shot from the source with 6, = 45°. In theory, the ray follows
an arc of a circle and travels downwards until a maximum depth where § = 90° (turning
point). Then it starts going upwards. It is clear that this path cannot be reproduced by
the described cell ray-tracing scheme, because once § = 90° has been reached, there is no
chance for 6 to take on greater values. A better alternative is to use a constant gradient
velocity within the corresponding cell. Locally, the raypath is an arc of a circle of known
equation, thus allowing for turning rays. Although cell ray tracing can be improved in
several ways, these kind of refinements will not be considered here. Instead, in next
chapter I will present a numerical ray-tracing method that is more flexible and accurate

for dealing with complex 2-D or 3-D media.
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4.4 Solving the boundary-value problem (BVP)

4.4.1 Problem definition

In general, it is the goal of a ray-tracing BVP solver to find the raypath connecting
any two fixed points within the model boundaries (two-point BVP). The raypaths must
be consistent with the ray theory which is used to propagate the wave through the
given velocity field (e.g. Snell’s Law at each cell boundary in a cell ray-tracing scheme).
Usually, this is carried out by finding the unknown take-oft angle that gives rise to a
ray propagating from the source to the receiver. In general, the BVP must be solved
iteratively, except in special cases. Although the solution sometimes is nonunique (several
raypaths may connect source and receiver satisfying the ray equations), the purpose of
SART is to find the raypath that exhibits the absolute minimum traveltime.

At this point it is worthwhile to make a distinction among various BVP alternatives.
In the standard two-point ray-tracing problem, the wave travels from source to receiver
without any additional constraint along its trajectory. I refer to this BVP as tracing
direct waves. Other BVP alternatives introduce additional constraints along the ray
trajectory. Such is the case of tracing reflections (including normal rays), headwaves, or

point diffractions.

Direct waves

Consider Figure 4.5. Let x, represent the location of the source and x, the location of the
receiver. These two points are fixed in space and must lie within the model boundaries.
For the sake of simplicity, I put them coincident with some of the model boundaries, but
they could be placed in the interior of the rectangular area shown in the figure as well. In
a tomographic experiment, for example, the source is detonated at x, at time £ = 0 and

the energy propagates in all directions. In particular, the ray that leaves the source with
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Figure 4.5: Source, receiver and raypath geometry in a two-dimensional two-point ex-
periment for tracing direct waves.

angle 6% arrives to the receiver with the minimum traveltime among all other possible
trajectories. Here 6% determines uniquely the raypath shown in the figure. It is the

purpose of SART to find #%* as well as the associated traveltime.

Reflections

In a reflection experiment (see Figure 4.6), not only must the ray connect both source and
receiver, but it must also undergo a reflection at a prescribed reflector. The reflector can
be described by a single-valued function of the form z = f(z). The absolute minimum
raypath corresponds to the one that leaves the source with take-off angle §%* undergoes
a reflection at point x, and arrives to the receiver. The only unknown is 6% for x, is
uniquely determined by the take-off angle.

Normal rays can be viewed as a particular case of reflected waves. Now both source

and receiver are coincident. Naturally, the angle between the ray trajectory and the
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Figure 4.6: Source, receiver, reflector and raypath geometry in a two-dimensional
two-point experiment for tracing reflections.

normal to the reflector at point x, is zero. Rather than finding the take-off angle corre-
sponding to the minimum reflecting raypaths, is is more efficient to find the coordinate

z, because half of the raypath needs to be traced.

Headwaves

Figure 4.7 depicts the case of tracing headwaves. The ray is now constrained to travel
along the refractor z = f(z). The ray leaves the source with take-off angle §%* and
arrives to the refractor at point x,. After traveling from x, to x, along the refractor,
the ray ends up in the receiver. Note that the angles between the ray trajectory and the
normals to the refractor at points x, and x, are equal to the critical angles as defined

by Snell’s Law. In this problem the unknowns are two: either %' and z,, or z, and z,.
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Figure 4.7: Source, receiver, refractor and raypath geometry in a two-dimensional
two-point experiment for tracing headwaves.

Diffractions

Diffraction ray tracing is another typical case of BVP. In a two-dimensional model, a
diffracting point x, is also fixed within the model boundaries, and the minimum raypath
connecting x, with x,, and then x,, with x,, is to be found (see Figure 4.8). The problem
can be split into two standard two-point ray-tracing problems, each one characterized by
independent take-off angles.

Different BVPs can also be defined, as is the case of multiples and complicated head-
waves. In any case, it is not the purpose of this work to deal with complicated wave
phases nor later arrivals that may obscure the description of the two-point ray-tracing

method.
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Figure 4.8: Source, receiver, diffracting point and raypath geometry in a two-dimensional
two-point experiment for tracing diffractions.

4.4.2 Conventional methods for solving the BVP

A brief description of some conventional methods for solving the BVP arising in ray
tracing follows. In [Cer87] a more detailed review can be found. The next section
presents a novel approach called SART, a BVP solver that is intended to overcome the

usual deficiencies of the conventional methods.

Shooting

The shooting method represents an iterative IVP. First, an initial point (source) is fixed
and the ray is propagated by specifying the take-off angle. Then, a search strategy is
used to update these angles until the ray emerges through the desired endpoint (receiver)
within a give tolerance.

Since frequently the receiver location is an ill-behaved function of the take-off angle,
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the strategy for updating the take-off angle may become a difficult task, and divergence
is a common issue unless the model, or the results of the computations, are conveniently
smoothed [LLC85]. As a consequence, some raypaths can be missed. The problem is even
more severe in the 3-D case, where two take-off angles are to be found. Headwaves are
obtained by using a similar trial-and-error search routine [Cas82], which is more difficult
to implement and more likely to diverge, because more variables are involved.

To find the optimum take-off angle corresponding to the ray connecting both source

and receiver, the distance

d=d6,) = ||x. — x| (4.10)

is to be minimized, where x. is the emerging point (the point where the ray leaves the
model boundaries), and x, is the desired endpoint (see Figure 4.10). This is a rather
difficult optimization problem. Equation (4.10) is zeroed using some kind of linearizing
method that requires an estimate of the partial derivatives of d with respect to 6,.

In the simplest form, shooting produces a fan of rays with equally spaced take-off
angles covering a given range. As a result, it is possible to generate function d = d(0,)
empirically, and then use a standard zero-finder to solve the equation d(6%*) = 0. In the
method of False position described by Julian and Gubbins [JG77] the partial derivatives
of the receiver coordinates with respect to the take-off angle are estimated numerically
by tracing three trial rays with slightly varying take-off angles. This method usually has
slow convergence caused by the inaccuracies in the estimation of the partial derivatives.
In [SK90] a more accurate set of derivatives is obtained by exploiting the fact that the
information regarding the position of the ray at any given point and the direction is
contained in the curvature of the local wavefront. So, the partial derivatives of the

receiver coordinates with respect to the take-off angle can be determined by solving
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the equations describing the geometrical spreading of the wavefront along with the ray
equations [SK90]. The procedure requires the solution of a system of 15 linear equations
per iteration for the 3-D case. To deal with discontinuities, extra equations to account
for the boundary conditions must be added. Despite the efforts made to avoid slow
convergence and to increase the accuracy, multipathing, discontinuities, and in general
the ill-behavior of the objective function represent serious problems for the shooting
method [SK90], and divergence can be expected in complex 2-D structures. In the same
work, a sort of climb-out procedure to avoid local minima is devised, but I do not believe

this is an efficient strategy when dealing with complicated 3-D structures.

Bending

In the bending method both points are linked by an initial guess path, which is then
perturbed iteratively so as to satisfy the ray equations or Fermat’s principle of stationary
time. Several bending techniques are reported in the literature [JG77, UT87, PTESS,
MNS92, Yon93| which, unlike shooting, always produce a ray connecting any source-
receiver pair. In general, bending involves the solution of a highly nonlinear optimization
problem, which requires some kind of gradient directions to update the raypath. In com-
plicated velocity structures, bending tends to overlook multipath propagation because
the solution depends on the first guess. As a result, the absolute minimum raypath
can be missed. Although a method based on advanced graph theory for choosing an
initial guess close to the global minimum exists [Mos89, Mos91, FL93], it is not clear
whether the final raypath is a global or a local minimum [MNS92]. Besides, it is worth
mentioning that the accuracy obtained with bending methods depends on the selected
parameterization (e.g. number of nodes for representing the ray trajectory), and that
the phase of the resulting ray may remain unknown throughout the process. Bending

methods are usually faster than shooting methods for relatively smooth models, except
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for tracing a large set of closely spaced rays where shooting may be preferred. In complex
models where shooting has its main drawbacks, bending is advantageous but at a higher
computational cost.

Figure 4.9 illustrates a standard bending method. The algorithm starts with an unre-
alistic straight raypath and perturbs it iteratively until the traveltime is minimum (in this
example the raypath is parameterized with a set of segments and the algorithm perturbs
the node coordinates). Clearly, whenever multipathing exists, the final solution depends
on the starting model. Further, if the velocity model contains discontinuities, bending
would present some difficulties in dealing with the node perturbation scheme, which is
usually based on gradient directions. Filho and Thedy [FT95] use genetic algorithms
(GA) to overcome these drawbacks. However, the optimization problem may become too
expensive when the number of unknowns (nodes) is large. At the same time, the number
of nodes can not always be kept small when a certain accuracy is required or the velocity

field is complicated.

Finite differences

Finite-difference (FD) methods are based on solving the eikonal equation' by means
of finite differences [Vid88, PL91]. The scheme allows one to obtain simultaneously the
traveltime field at the nodes of the finite-differences grid. By interpolation, the traveltime
corresponding to the ray connecting both source and receiver can be obtained when the
endpoint does not coincide with some grid node. The corresponding raypaths are found
by following the normals to the wavefronts from source to receiver. FD methods are very
suitable for computing traveltimes in relatively smooth velocity models, and the efficiency

reached by these schemes is quite high, especially when a large set of rays needs to be

LA form of the wave equation for harmonic waves valid only where the variation of properties is small
within a wavelength (high-frequency approximation).
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Figure 4.9: In the bending method, an initial guess path is iteratively perturbed until the
traveltime is minimum or the ray equations are satisfied. Usually bending gets trapped
in local minima and misses the optimum (global minimum) raypath.

traced. However, since their accuracy depends upon the validity of the finite-difference
approximation, when the model contains discontinuities or the velocity varies rapidly,
the limitations become apparent. The use of a denser grid usually does not help much.
The main drawback of the FD method is, however, the fact that it only produces first
arrivals, regardless the phase of the obtained raypath. That is, given a gridded velocity
field and a source-receiver geometry, in general it is not possible to know which type of
wave phase the traveltime obtained by the FD method corresponds to. It may correspond
to a diffraction, or a headwave, or a direct wave, etc., whichever arrives first. This issue

is very important from the point of view of phase identification and the energy of the

arrivals [GB93].
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Linear traveltime interpolation

Linear traveltime interpolation (LTI) was first introduced in [IRS88] and later modified in
[AK90]. As in the FD method, a gridded 2-D cell model is used. Raypaths are assumed
straight within each cell, and traveltimes are computed on the cell boundaries based
on the linear interpolation of traveltimes. Cell boundaries are subdivided into several
segments and the minimum traveltime is calculated at every resulting grid point. After
computing traveltimes, a backward process is utilized to trace the raypaths based on
the reciprocity principle. The LTI method is reported to be more accurate and more
suited for gridded 2-D cell models than the FD method [AK93]. LTI can even handle
abrupt changes of velocity without the need to smooth the velocity field or to increase

the number of cells. Like FD, LTI produces only first arrivals.

Huygens’ principle method

Methods based on the Huygens’ principle have been developed in order to avoid the
difficulties associated with the branching points of a ray (see for example [Sai89]). Meth-
ods based on graph theory may also be included in this category [Mos89, Mos91, FL93].
Like FD and LTI, these methods are applicable to gridded cell models. According to
Huygens’ principle each grid point becomes a secondary source, from which a new ray
propagates to all directions. In practice, the number of directions is fixed and therefore
the number of paths connecting two points becomes finite. Traveltimes corresponding
to each possible path are compared and the one with minimum traveltime is selected.
The accuracy is limited to the model discretization, and the computational requirements
increase dramatically with the number of cells, nodes and directions, in particular for 3-D
models. Recently, graph-theory methods have been applied to 3-D media [CH96], but a

thoughtful study of its applicability for complex 3-D structures remains to be done.
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4.4.3 Simulated annealing ray tracing (SART)

As a counterpart, I present here a novel method for solving the BVP that combines
SA with ray-tracing techniques [VU96a, Vel96]. SART has both shooting and bending
features. On the one hand, a standard IVP is solved at each iteration. On the other
hand, the raypath is arbitrarily modified so as to satisfy the boundary conditions. At
convergence, the solution to the IVP yields the optimum ray trajectory connecting source
and receiver.

It 1s the goal of SART to find the raypath that exhibits the absolute minimum trav-
eltime. It is not the objective of the method to find all possible rays connecting the two
fixed points, but only the one that exhibits the absolute minimum traveltime for a given
wave phase. SART focuses on direct first arrivals, for it is based on solving the IVP.
In many ray-tracing applications these are of greatest importance because they usually
represent the most energetic events [GB93]. Arbitrary headwaves, diffractions and waves
propagating through shadow zones cannot, in general, be found by SART. In these cases,
bending, finite-difference, or graph-theory methods should be used. However, SART can
be easily modified so as to handle these kind of waves if the ray signature is defined be-
forehand, as shown in Figures 4.6, 4.7, and 4.8. It is important to note that the method
is not suitable for obtaining raypaths corresponding to local minima (such as caustics
and triplications) nor minimum paths that exhibit exactly the same traveltime in some
pathological cases, which are beyond the scope of this work.

SART, unlike bending, avoids local minima and converges to the absolute minimum
traveltime, provided the proper cooling schedule is utilized. As mentioned before, the
number of unknowns in the bending method is usually large if a certain accuracy is
required. On the contrary, the number of unknowns in SART reduces to a few and it

is not affected by local minima nor discontinuities. Any ill-behavior of the objective
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function does not represent a serious problem, in general, for VFSA, which is a natural

tool for dealing with highly nonlinear optimization problems.

4.5 Simulated annealing ray tracing (SART)

SART essentially proceeds as follows (see Figure 4.10). Given a fixed source point, x,,
and an initial take-off angle, 8,, the ray is propagated until it leaves the model boundaries
or arrives at the boundary of a prescribed near-receiver region (e.g. the receiver cell),
determining the emerging point x.. This point is then connected with a straight line
directly to the receiver point x,. The total traveltime, which is computed as the path
integral of the slowness between x, and x,, is minimized with respect to 8, using VFSA.
Notice that the ray satisfies Snell’s Law at all crossed cell boundaries, except for the
segment connecting x. to x,. Nevertheless, when the minimum is obtained, Snell’s Law

is also satisfied for the last portion of the raypath, too.

4.5.1 Description of the algorithm

Basically, at each iteration an IVP is solved starting from the source, x,, with take-off

angle 6,. The propagation is terminated provided either

1. the ray arrives at the model boundary; or

2. the ray arrives at a prescribed near-receiver region (e.g. receiver cell).

The point where the ray meets one of the above two conditions is called x.. The raypath
i1s completed by connecting x. with the receiver, x,, with a straight line. Figure 4.10
illustrates this situation when condition (1) is met for a 2-D model. Note that the segment
connecting x. with x, is quite arbitrary, and the resulting raypath may be completely

unrealistic. The purpose of the straight-ray construction is to force the raypath to satisfy
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Figure 4.10: Straight-ray construction used by SART. When traveltime is minimum,
X, coincides with x, and the minimum path with optimum take-off angle #°* has been
found.

the constraint imposed by the BVP. This is an intermediate raypath that, like in bending,
is updated iteratively.
The total traveltime is computed by integrating the slowness field s(z, z) = 1/v(z, 2)

along the path [ between both endpoints:

T:/xrsdl:Tse—l—Te,,, (4.11)

where

T, = /xe sdl (4.12)

is the traveltime associated with the first portion of raypath that starts at x,, and

T, — /.x, sdl (4.13)
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1s the traveltime associated with the straight-ray construction starting at x.. The integra-
tion here is done along the straight line. In the cell ray-tracing scheme, the integrals are
approximated by discrete sums over all ray segments that make the raypath.

Since source and receiver are fixed and x. is uniquely determined by the solution of
the IVP (I assume the IVP can be solved for any given take-off angle §,), T becomes a

function of the take-off angle only, so

T = T(8,). (4.14)

The final raypath is found by recalling Fermat’s principle. When traveltime 7' is mini-
mum, X, coincides with x, and the whole raypath satisfies the ray equations. As I will
show later, this is not always strictly true, and some ray for which x. # x, may arrive
earlier than any other realistic path. However, I will reformulate the problem so as to
overcome this eventual difficulty. The straight-ray construction could be replaced by any
other arbitrary ray construction inasmuch as traveltime 7., tends to zero as x. tends to
X,. The straight-ray construction has been chosen for expediency only, because it adds
little extra effort to computing 7t,.

The basic problem now becomes an optimization one in which one parameter (take-off
angle) is to be found so that 7" is a global minimum. Since expression (4.14) is a highly
nonlinear, multimodal, and nondifferentiable function, it cannot be properly minimized
using classical linearizing methods. I use instead VFSA, which is a very powerful tool
for minimizing cost functions independently of its nonlinearities, discontinuities, and

stochasticity.
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4.5.2 SART for more complex BVPs

So far I have described the strategy for solving the two-point boundary-value ray-tracing
problem that takes into account direct waves only. It is capable of finding the raypath
connecting the two endpoints x, and x, with the absolute minimum traveltime, inde-
pendently of any possible reflection along its trajectory. However, many times one is
interested in finding the raypath corresponding to complex raypaths, such as reflected
waves or headwaves. This can be accomplished by incorporating minor modifications to

the already described two-point ray-tracing scheme.

Handling reflected waves

In the case of reflected waves, the ray must undergo a reflection at a predefined boundary
z = f(z). The reflection occurs at point x, = [z, f(z,)], which is unknown (see Figure
4.11a). Here the ray is forced to arrive to the prescribed boundary where a reflection is
desired. This is done by penalizing those rays that do not reach the prescribed boundary.
Once the ray reaches the boundary, it undergoes a reflection and propagates towards the
emerging point X.. Then X, is connected with x, using a straight line as described above.
Since the ray trajectory is comprised of three portions, I define the following cost function
to be globally minimized:

Tow+ Tue + Ter = [Jrsdl+ [Fesdl+ [ sdl, 2z, = f(zx) for some k
¢, = P,(6,) = { ’ " ‘

Trnaz, otherwise

(4.15)

where

Trae > / T sdl, Ve, (4.16)
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can be guessed easily from a set of trial raypaths or set simply as Doz = lnaz/Vmin,
where [, 1s the maximum expected path length, and v,,;, is the minimum velocity of
the model. In equation (4.15) T is the traveltime associated with the second portion
of the raypath starting at point x,. Cost function ®;(6,) as defined above ensures that
the resulting traveltime for those rays that do not reach the reflector is always greater
than that corresponding to any reflected wave. As a consequence, the global minimum
of equation (4.15) corresponds to a reflection, and x. = x,. Notice that equation (4.15)
introduces first-order discontinuities at those angles where the ray stops reaching the
discontinuity. This is not an issue for VFSA to be worried about, but may lead to extra
iterations during the optimization process, because those rays that do not reach the
discontinuity are generated unnecessarily.

An alternative scheme that avoids using a penalty cost function and that ensures that
all generated rays correspond to a reflection, is to start the ray propagation from point
X, towards the emerging points x., and x., as shown in Figure 4.11b. In this scheme the
number of unknowns has increased by one. Not only coordinate z, must be obtained,
but also take-off angle 6,,. The take-oft angle corresponding to the ray traveling from x,

to x., is related to 6,, by

8., = 2w — 0, — 2arctan [f'(z,)], (4.17)

easily derived from the figure. Then, it is convenient to define the cost function

<I>2zéz(eul;mu):Tuel—|—T513—|—Tu52—|-T52,,:/ “sdz+/ “’sdz+/ Tsdi+ [ sdi,

Xu e1 Xeg

(4.18)

that is to be globally minimized using VFSA.
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Figure 4.11: Alternative strategies used by SART for tracing reflections connecting source
and receiver (see text for details). (a) Here SART searches for the optimum take-off angle
6, until x. = x, and traveltime is minimum. (b) Here the search involves z, and 6,,. At

convergence, X., = X, and X, = X,.
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Yet another alternative scheme could be devised that depends on a single unknown,
as in the first case, and that always generates a reflection at the discontinuity, as in the
second one. This scheme is illustrated in Figure 4.12a. Here the ray leaves the source
with take-off angle 6, and arrives to either point x, on the discontinuity, or to point x.
on some model boundary. If x, is met first, the ray undergoes a reflection and travels
towards x. as in Figure 4.11a. But if x. is met first, a vertical straight ray segment is
used to join it with x; = [z., f(z.)] and back again x.. From x. to x, the straight-ray

construction is used as usual. Then I write

Tow+ Tue + Ter, 2z = f(@x) for some k

@3 - @3(93) == (4:]_9)
Tye + 2T + T, otherwise

where

f(me)
T = / s(ze, z) dz. (4.20)

In essence, equation (4.19) is equivalent to equation (4.15), where T,,,, have been replaced
by Tse + 2Tes + Ter. 1t is clear that this construction will generate rather arbitrary ray
trajectories with no physical sense except at convergence.

Which of the three alternative schemes would be the most effective and efficient SART
scheme for obtaining the optimum reflection connecting source and receiver, cannot be
said a priori. Clearly the first one involves the fewest operations per iteration, but no
final conclusion can be drawn regarding which one converges faster. At first sight the
second approach would require more iterations since the model space to be explored by
VFSA is two-dimensional. The underlying velocity model and source-receiver geometry
play an important role, too. It can be said, however, that once the optimum take-off

angle has been found



Chapter 4. Two-Dimensional Boundary Value Ray Tracing 86

01(677) = ®2(677 27) = 25(677). (4.21)
Normal rays In the normal rays case x, = X,, and the principle of reciprocity is

applied. The ray leaves the reflector at point x, with take-off angle 8, and arrives to the
emerging point X, (see Figure 4.12b). Note that the tangent to the raypath is parallel
to n at point x,, the normal to the reflector. The only unknown is z,,, since 6, can be

computed with

6, = m — arctan [f'(z,)] . (4.22)

Thus, for this particular case, the cost function to be globally minimized is written as

& = B(zy) = 2ATue + Ty), (4.23)

where

T = / “sdl, T., = / "sdl. (4.24)
In SART, equation (4.23) is globally minimized using VFSA.

Handling headwaves

To trace headwaves along a prescribed boundary, z = f(z), the ray trajectory is broken
into various parts. As shown in Figure 4.7 and described in section 4.4.1, the final raypath
has three parts, but the intermediate raypaths which are obtained at each iteration are

normally composed of five, as shown is Figure 4.13 and described below:
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Figure 4.12: (a) SART for tracing reflected waves. Yet another alternative strategy.
When the ray leaves the model at point x., a double straight vertical line is used to
force an (unrealistic) reflection at point x5 = [z, f(z.)]. (b) Normal rays case. In the
optimization problem, coordinate z, represents the only unknown.
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Figure 4.13: SART for tracing headwaves. Both coordinates z, and z, are globally
optimized until the total traveltime is minimum.

1. the ray that leaves a point x, = [z4, f(#,)] with take-off angle 6,, and arrives to

the emerging point x.,,

2. the ray that leaves a point x, = [z, f(z,)], ©, > ., with take-off angle 6,, and

arrives to the emerging point x,,
3. the ray that propagates along the boundary from x, to x,,
4. the straight-ray segment that connects x., with x,, and
5. the straight-ray segment that connects x., with x,.

The problem now consists on finding the unknown points, x, and x,, so that the
first part of the ray arrives to x,, the third one arrives to x,, and the total traveltime is
minimum. That is, the problem has been split into two IVPs (now the take-off angles are

known and the initial point is not), plus the ray propagation along the refractor. Each of



Chapter 4. Two-Dimensional Boundary Value Ray Tracing 89

both IVPs, are not, however, independent. The take-off angles to trace ray parts (1) and
(2) above are closely related to the respective critical angles and normals to the refractor

at points x, and x,. That is

{ 6, = 7 + arcsin(v, /v, ) — arctan f'(z,)
(4.25)

6, = m — arcsin(v,/v,) — arctan f'(z,)

where v, and v, are the velocities right above the refractor at points x, and x, respect-
ively, and v, is the refractor velocity (v, > vy, v, > vy).

For this problem the total traveltime to be globally minimized can be written as

¢1 = @1(43“, ti) = Tuel + T’uez + Tuv + Tels + Tez'm (426)

where

Ty = / sle, f(2)] de, (4.27)

is the traveltime along the refractor from x, to x,. I minimize equation (4.26) with respect
to the two unknowns z, and z, using VFSA. Again it must be stressed that equation
(4.26) is highly nonlinear and multimodal, and that although a trial-and-error procedure
for finding z, and z, is feasible, the same kind of difficulties that arise in shooting to
choose the take-off angle is expected. In a 3-D velocity model, if the prescribed boundary
is defined by the surface z = f(z,y), the total traveltime is a function of four variables,
say (Zy,Ys) and (@,,y,). A trial-and-error procedure to find the four unknowns may be
both inefficient and ineffective for obvious reasons.

Alternatively, the total traveltime can be defined in terms of , and =z, (or 6, and z,):

¢2 = @2(937 mv) = Tsu + Tuv + Tve + Ter; (428)
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Figure 4.14: SART for tracing diffractions. See text for explanation.

Now the ray trajectory has been split into four portions, since x,, is uniquely determined
by 6,. In this formulation some penalization, as in the case of tracing reflections, must
be introduced to force the ray arriving to the refractor. In practice I have found that the

previous formulation, equation (4.26), is more easily optimized than equation (4.28).

Handling diffracted waves

SART for diffractions of the type shown in Figure 4.8 (point diffraction) follows
a similar strategy as in the cases of reflections and headwaves. The problem is split
into two BVPs that can be solved separately or simultaneously. Again the principle of
reciprocity is applied to trace the rays from the diffraction point x, towards the emerging
points x., and X.,, as shown in Figure 4.14. Then a straight line is used to connect these
points with source and receiver respectively. Thus the ray trajectory is composed of four

portions. Now I define the cost function
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Figure 4.15: SART for tracing multiples. See text for details.

¢ = Q(eu“euz) = Tuel + Tels + Tuez + Tez'm (429)

that is to be globally minimized with respect to the take-off angles 6,, and 6,,.

4.5.3 Shadow zones, multiples, and more

Despite the fact that SART can be modified to take care of other kind of waves, it is not
suitable, in general, for obtaining rays propagating through shadow zones, for it is based
on solving the IVP. The best it can do in these cases is to detect a candidate shadow
zone whenever X, fails to converge to x, within a given tolerance and after a maximum
number of iterations. But as already described, simple diffractions and headwaves that
may propagate through shadow zones are easily incorporated provided the ray signature
is specified a priori.

It is also possible to trace more complex raypaths such as multiples and complex
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headwaves. In all the cases the ray signature must be specified a priori. Take Figure 4.15
as an example. The multiple is generated in the low velocity layer, which is delimited by
two predefined boundaries, z = fi(z) and z = f3(z). The ray signature for this particular
case can be summarized by setting JOP;(I) = {3,5,3,0} and IOP,(I) = {5,5,0}. If the
propagation is started from x, it is necessary to devise some strategy so that the resulting
ray undergoes two reflections on z = f3(z), and one reflection and two refractions on
z = fi(z). As in the case of a single reflection, various alternative schemes are possible.
The simplest one would be to define & = ®(0,) as in equation (4.15), taking into account

the various portions of the raypath and a penalty term:

Tou; + Tuguy + Tugus + Tuzuy + Luguy + Lugr, signature is satisfied
¢ =P(,) =

Tnae otherwise

(4.30)

but an approach as in equation (4.19) is also possible.
At this point, the reader has probably noticed that the philosophy underlying the
SART method is to put the BVP into a convenient optimization framework which is in

turn solved by means of VFSA.

4.6 Numerical examples and discussion

In all the examples I am going to show, the 2-D velocity field is defined over a grid
with rectangular cells. The velocity is piecewise constant within each cell. Distances
are given in meters, traveltimes in malliseconds, velocities in kilometers per second, and
angles in degrees. All take-off angles are measured counterclockwise from the positive
z-axis that points downwards. The coordinates of the first grid node, i.e. node (1,1), are

(Zmin, Zmin) = (0,0), and the size of each cell is 1 x 1. For the sake of simplicity, source
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and receiver are always located on some model boundary. Velocity fields are plotted in

a grey scale where dark grays correspond to higher velocities.

4.6.1 Model 1: smooth model

Take Figure 4.16 as an example to illustrate the two-point ray-tracing algorithm. The
velocity field varies smoothly between 1.3 and 2.5 km/s over a grid of 100 x 100 square
cells. Note that various low and high velocity anomalies have been introduced. I put
a source at (0,0) and produced a fan of rays with equally spaced take-off angles in the
range [20°,80°] (see left panel of the Figure). Despite the fact that the velocity model
1s smooth, it is evident from the graph that the raypath distribution is rather complex,
particularly in the lower-right quarter of the model where raypaths start to cross.

The behavior of the raypaths make it difficult to obtain the optimum arrival. This re-
quires to globally minimize cost function ®(6,), which is not a trivial task for conventional
ray-shooting and bending methods. The main difficulty arises from the fact that there
are several rays that connect source and receiver (multipathing). In effect, the five rays
shown in the right panel of Figure 4.16 arrive at the receiver following different paths.
Their traveltimes correspond to local minima of function ®(6,). Table 4.2 summarizes
their take-off angles and traveltimes. Notice that some of the rays exhibit quite similar
traveltimes (rays 1 and 2; rays 4 and 5), but their trajectories are rather different. SART
found the absolute minimum traveltime among all possible raypaths after a maximum of

200 1terations:
6, = 70.4°, ® =T, = 71.85 ms.

This example shows the importance of using a global optimization algorithm for finding
the optimum take-off angle. Clearly, a bending algorithm would converge to the path

which is closest to the initial guess. Similarly, it is not possible to anticipate which
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optimum
path

100

Figure 4.16: Model 1: tracing direct waves. Left panel: two-dimensional smooth velocity
model and raypath distribution. The figure shows a fan of rays with equally spaced
take-off angles starting at the source point x, = (0,0). Right panel: multipathing for
the given source-receiver geometry. The raypath plotted with dotted line exhibits the
minimum traveltime. All raypaths honor Snell’s Law at cell boundaries.

solution the shooting method will yield but obtaining the five raypaths.

4.6.2 Model 2: reflector model

This example illustrates SART for tracing reflected waves. I constructed the velocity
model depicted in Figure 4.17. The velocity has a constant gradient increasing with
depth as v(z,z) = 2 + 0.02z, and an irregular reflector is located at a depth of about 45

m, with equation

f(z) =48 — (z — 40)*/160 + 1.75sin(z /4). (4.31)
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2.5
v (km/s)

Figure 4.17: Model 2: tracing reflected waves. Top panel: two-dimensional velocity
model and raypath distribution. The dotted line represents the reflector. The figure
shows two fans of rays with equally spaced take-off angles in the ranges [—19°, —14°] and
[15°,20°] respectively. Bottom panel: multipathing for a given source-receiver geometry.
The raypath plotted with dotted line exhibits the minimum traveltime.
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Model 1 Model 2 Model 3
Ray 0, (deg) | T (ms) | 65 (deg) | T (ms) | @, (m) | z, (m) | T (ms)
1 39.84 | T4.6587 -10.71 | 46.1864 33.53 67.94 | 44.4353
2 54.01 74.9838 -7.63 | 46.0965 | 33.53 | 84.89 | 42.7057
3 70.45 | 71.8520 10.98 | 41.0759 | 51.05 | 67.94 | 45.3943
4 72.34 72.3441 18.62 42.0453 51.05 84.89 43.7022
5 73.10 72.1679 31.58 | 39.5869 - - -
6 i | 2089 | 43.0836 i i i
7 i S| ara5 | 437701 i i i

Table 4.2: Multipathing in the three models. SART solutions are shown in boldface.

Below z = f(z), v(z,z) = 3 km/s. To visualize the multipath nature of the model,
I located a source at (35,0) and produced a fan of rays with equally spaced take-off
angles in the range [—40° 60°]. The resulting receiver-distance d and traveltime curves
are shown in Figure 4.18. Here d is the distance between the raypath endpoint and the
origin, measured along the model boundaries starting at (0,0). For a receiver located at
x, = (70,0), cZ(X,,) = &, — Tmin = 70 m. For clarity, I have plotted only two subsets
of raypaths in Figure 4.17, for take-off angles in the ranges [—19°, —14°] and [15°,20°].
Their corresponding traveltimes and receiver distances map in Figure 4.18 (thick solid
lines). By inspecting the receiver distance and traveltime curves, it can be appreciated
that any receiver located on the surface (ci < 100) is reached by a number of rays (note
the multivalued nature of the traveltime curve shown in Figure 4.18a). In particular,
a receiver located at (70,0) receives the arrival of seven quite different rays, which are
plotted in Figure 4.17 (bottom panel), and marked with filled circles in Figure 4.18. Table
4.2 summarizes their take-off angles and traveltimes. The raypath obtained by SART

corresponds to
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Figure 4.18: Model 2. (a) Traveltime vs receiver distance. (b) Receiver distance vs
take-off angle (see text for explanation).

6, = 31.6°, ® = Tope = 39.59 ms

(point A in Figure 4.18 and dotted line in Figure 4.17). This BVP solution is the
one which globally minimizes cost function (4.15), the others being local minima (later
arrivals) of the same function. SART globally minimized the cost function successfully
after a maximum number of iterations equal to 300. Figure 4.19 shows cost function as
a function of 6,, where the global minimum (point A in the left panel) is clearly seen,
and the convergence curve after 300 iterations. For such a multimodal cost function, it
is necessary to use a nonlinear optimization algorithm to avoid getting trapped in local

minima.

4.6.3 Model 3: refractor model

The model shown in Figure 4.20 is intended to illustrate SART for tracing headwaves.

The velocity increases with depth as v(z, z) = 24+0.01z. Below f(z) = 45—z /5 (refractor)
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Figure 4.19: Model 2. (a) Cost function vs take-off angle. This function exhibits several
local minima. (b) SART convergence after 300 iterations.
the velocity is 6 km/s. A rectangular high velocity anomaly (v = 3 km/s) that generates
a strong discontinuity has been included as shown in the figure. By locating the source
at (10,0) and the receiver at (90, 0), I have found a total of four possible trajectories that
connect both endpoints. These four raypaths, which are also shown in Figure 4.20, top
panel, undergo refractions at critical angles at the prescribed horizon. The take-off angles
at points x, and x, are computed using formula (4.25). Table 4.2 shows traveltimes and
coordinates z, and z, for the four raypaths. It is important to point out that although
any two raypaths share one of the two coordinates, their total trajectory are independent.
This means that it is not possible to optimize one of the two unknown coordinates (z,
or z,) separately. To find the global minimum traveltime, both coordinates must be
optimized simultaneously.

Cost function (4.26) is a two-parameter function that requires special care in order to
be minimized. The anomaly in the velocity field not only introduces first-order disconti-

nuities, but also makes ®(x,,x,) multimodal. Figure 4.21 shows & as a function of both
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Figure 4.20: Model 3: tracing headwaves. Top panel: two-dimensional velocity model
and multiple ray trajectories connecting the given source-receiver pair. The dotted line
at the bottom represents the refractor. The raypath plotted with dotted line exhibits
the minimum traveltime, and corresponds to the SART solution. Bottom panel: SART
raypaths for a set of 25 source-receiver pairs. Note the shadow zone around z = 72.5 m.
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Figure 4.21: Model 3: cost function vs coordinates z, and z,. Contour lines correspond
to @ = 44, 47, 50, 53 and 57 ms. Points A, B, C and D denote local minima. Point B is
the global minimum obtained by SART.

unknown coordinates z, and z,. Note the complexity of the cost function, despite the

fact that the model is quite simple?. The solution obtained by SART after a maximum

of 300 iterations yields
z, = 33.5, z, = 84.9, ® =Topt =42.71 ms.

The convergence curve is depicted in Figure 4.22.

Finally, Figure 4.20 (bottom panel) shows the resulting optimum raypaths after loc-
ating a single source at (10,0) and 25 receivers uniformly distributed along the surface
between z = 50 m and # = 100 m. These raypaths were obtained using SART with a
maximum of 300 iterations. Note that a few arrivals undergo a refraction at the rec-
tangular anomaly after reaching the prescribed boundary. Also, there is a shadow zone

at about # = 72.5 m caused by the discontinuity. In SART, shadow zones are detected

2Even though the cost function presents some discontinuities of first order, it is shown as a single
connected mesh for plotting purposes only.
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Figure 4.22: Model 3: SART convergence after 300 iterations.

when the last point in the raypath does not coincide, within a certain tolerance, with the

receiver after a maximum number of iterations.

4.7 Conclusions

I presented a new method for solving the two-point seismic ray-tracing problem. It uses
VFSA to find to global minimum traveltime among all possible raypaths connecting both
endpoints. The strategy overcomes effectively many problems that arise in conventional
two-point ray-tracing systems, namely bending and shooting methods. The problem of
local minimum path in the bending methods is completely overcome by using a global
optimizer. The difficulties regarding the strategy for choosing the appropriate take-off
angles in the shooting method, are also obviated. This is very important particularly in
3-D models, where two take-off angles are to be examined. Also for tracing headwaves,
where additional variables should be included in the search strategy. On the other hand,
the addition of a few variables to the nonlinear optimization problem implies almost no

extra effort for the VFSA algorithm, but certainly it does for a trial-and-error search
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routine.

Later arrival times, like reflections and simple headwaves, can be easily obtained by
constraining the ray to arrive at a prescribed boundary. When headwaves are involved,
the problem consists of finding the coordinates of the points where the ray enters and
exits the prescribed boundary at critical angles. The methodology can be extended to
deal with more complex raypaths (multiples, higher order headwaves, diffractions, etc),
provided the total traveltime equation can be computed, no matter how nonlinear it is
with respect to the variables that define the raypath.

The method is very flexible and general in that any available one-point ray-tracing
system can be used to solve the IVP at each iteration. The accuracy of the resulting
traveltimes is not dependent on the parameterization of the raypath, but on the selected
initial value ray-tracing system. This means that any kind of velocity models can be
involved and any desired accuracy can be obtained, provided a suitable initial value ray
tracer is chosen.

Note that the resulting raypath signature is known a priori and a posteriori, an issue
that is very important from the point of view of phase identification.

One possible disadvantage is that raypaths are obtained one at a time and the fact
that the price for obtaining global convergence is paid by requiring a high number of
iterations. However in all the tests I have performed so far, a maximum of 300 iterations
were enough. For simple velocity models, or single pathing, the number of iterations
required for convergence may be reduced to a few tens. The addition of extra variables
to define certain type of waves (e.g. headwaves), did not require more iterations for
convergence.

I have tested SART in a number of clarifying synthetic examples and demonstrated
the importance of obtaining the global minimum path in multipathing cases. At this

point I would like to point out that the potential of the method will be more noticeable
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in 3-D than in 2-D models, and particularly in complex media, where standard shooting
and bending methods may fail to provide global convergence efficiently. This will be

demonstrated in next chapter, where an extension of SART for 3-D models is developed.



Chapter 5

Boundary Value Ray Tracing In Complex 3-D Media

Zeus no podrd desatar las redes

de piedra que me cercan. He olvidado
los hombres que antes fui; sigo al odiado
camino de mondtonas paredes

que es mi destino. Rectas galerias

que se curvan en circulos secretos

al cabo de los arios. Parapetos

que ha agrietado la usura de los dias.
En el palido polvo he descifrado

rastros que temo. El aire me ha traido
en las concavas tardes un bramido

o el eco de un bramido desolado.

S€ que en la sombra hay Otro, cuya suerte
es fatigar las largas soledades

que tejen y destejen este Hades

y ansiar mi sangre y devorar mi muerte.
Nos buscamos los dos. Ojald fuera

éste el ultimo dia de la espera.

Jorge Luis Borges — El Laberinto

5.1 Introduction

With the advent of higher computing performance, 3-D seismic processing started to play
an important role in today’s seismological studies. Usually, the approximation of the
raypath being limited to a plane is not accurate enough for many applications. It is clear
that the physical phenomena of seismic wave propagation can be better approximated
by considering a realistic 3-D trajectory, especially for arbitrary laterally varying media.

Several methods for solving the two-point ray-tracing problem in 3-D have been de-

veloped in the literature [JG77, Cer87, UT87, PTES88, SK90, VF91, Per92, Sun93, MS97].

104
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However, none of them gives a satisfactory solution to the multipathing problem. They
are all either shooting or bending algorithms that proceed iteratively from an initial guess
until the ray arrives to the receiver or until traveltime is stationary. When more than one
raypath exists between source and receiver, it is not clear which solution the algorithm
will converge to. In most cases, the algorithms converge to the raypath that is closest
to the initial guess. Attempts to obtain the global minimum traveltime raypath have
been made in [SK90], but convergence to the global minimum is not guaranteed. Their
strategy is based on a hit-or-miss search that becomes very inefficient, and its results
unpredictable, when dealing with complicated 3-D structures. In the 2-D case, as men-
tioned in previous chapter, methods based on graph theory for calculating the shortest
path have been applied successfully to the two-point seismic ray tracing problem in 2-D
media [Mos91, FL93], and recently in simple 3-D media [CH96]. When the velocity model
at hand is complicated, unless a very dense network is used to allow for all possible con-
nections, graph-theory methods do not guarantee convergence to the global minimum.
In practice there is a trade-off between accuracy and computational requirements, both
in terms of speed and memory. Nevertheless, they are attractive methods because several
raypaths are obtained simultaneously, and provide good starting paths for more accurate
iterative methods like bending. But the implementation of these techniques for complex
3-D media has not been tested yet nor their global convergence in these cases assessed.

The purpose of this chapter is twofold:
e to present an extension of SART to general 3-D media, and

e to develop a very flexible model parameterization that can be used in conjunc-
tion with SART to trace complex raypaths through arbitrary laterally varying 3-D

media.

I will not describe here the advantages and disadvantages of SART with regards to the
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mentioned two-point ray-tracing systems, for they were already discussed in previous
chapter for the 2-D case. Issues concerning accuracy and phase identification discussed
in Chapter 4 apply here, too. For example, the accuracy obtained by bending methods,
including graph-theory-based methods, rely in the number of nodes used to approximate
the ray trajectory. This leads also to a strong trade-off between efficiency and accuracy
less serious in SART. It is worth mentioning, however, that global convergenceis the main
goal and advantage of SART over the other methods for very complex 3-D structures,
with a relatively small computational effort.

Though the main goal of this chapter is the 3-D extension of SART, the second objec-
tive, which involves solving the forward problem, is no less important. Often, the forward
problem in ray tracing is a very difficult task, especially for complex 3-D structures with
arbitrary interfaces. Many codes for ray tracing in laterally varying media are available
in the literature (see for instance [Cer87] for a concise review) and even from Internet, but
they are usually applicable to a limited class of models (e.g. layered structures). On the
contrary, the method implemented here may be applied to large class of velocity models.
In the 3-D case, SART is based on the numerical solution of the ray equations. The
differential equations that govern the wave propagation are integrated using standard
numerical ODE solvers until the ray emerges through the desired endpoint following the
absolute minimum traveltime path. The model is characterized by any number of re-
gions separated by arbitrary curved interfaces. The velocity field within each individual
region is specified separately. It may be any function of the space coordinates with the
constraint of being twice differentiable. This provides greater flexibility and accuracy for
dealing with general 3-D media.

SART extension to 3-D follows the same philosophy as that given in previous chapter.
The BVP is put into a nonlinear optimization framework which is in turn solved by means

of VFSA. This guarantees convergence to the global minimum of the cost function that
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represents the total traveltime from source to receiver. Unlike the 2-D case, the cost
function 1s at best a unimodal two-dimensional continuous smooth surface. But in real
life, the cost function is a multimodal, discontinuous, nondifferentiable rough surface of
two (or more) variables. To obtain the absolute minimum of such an ill-behaved function,
a stochastic technique like SA becomes an invaluable tool.

After a discussion of the mathematical basis of the ray tracing system, the algorithm
is tested on various synthetic examples. Although speed is not an attribute of SART, the
results obtained demonstrate the ability of the method for solving the BVP in complex 3-
D media where conventional methods may fail to give the desired solution in a reasonable

time.

5.2 Earth model

Instead of using constant-velocity cells to represent the velocity field, this section de-
scribes a model representation that allows greater flexibility and accuracy. The system
can accommodate any number of regions with different velocities separated by arbitrary
interfaces. The velocity model is composed thus of any number of regions separated by
curved interfaces representing geologic horizons, fault planes, etc. I assume all interfaces

are arbitrary one-to-one functions given by

z = f(z,y). (5.1)

The velocity within each region may be specified by any function v = v(x), x = (z,y, 2),
and must be twice differentiable. This model representation is quite flexible to represent
a wide variety of velocity structures. More elaborate interface descriptions in terms
of triangular GOCAD faces [MJC89], parametric surface patches [Per92|, implicit B-

splines [VF91], or natural neighbor interpolation [SBM95] can be devised, but finding the
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Fault model (Model 1)
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Figure 5.1: Three-dimensional model with six planar interfaces and seven constant ve-
locity regions. Note the fault plane.

intersection points between the raypath and the surface becomes a more costly task than
using explicit surfaces as in equation (5.1). As it is, SART can accommodate, however,
any set of cubic B-splines with regular and/or irregular spacing to define f(z,y) and
obtain greater flexibility, as done in [MS97]. In SART it is also possible to have a multiple
definition for f(z,y) according to the values of coordinates z and y (i.e. f(z,y) need not
be a single analytical expression). This may imply that interfaces are nondifferentiable,
which does not represent a problem for the following ray-tracing system. Take Figure 5.1
as an illustrative example. The figure shows a 3-D velocity model where several regions
are determined by planar interfaces. Some interfaces do not extend for all values of z
and y. For instance, the fault plane extends from z = 75 until it meets the top interface.
More elaborate models can be easily built by considering variable velocities and curved

interfaces, as will be shown later.
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5.3 Solving the initial-value problem (IVP)

In Chapter 4 and in [VU96a] a cell ray-tracing scheme was used where the velocity within
each rectangular cell was assumed to be constant. The ray was propagated using Snell’s
Law at each cell boundary, and thus it was composed of a number of segments. Cell
ray tracing, although fast and useful in many applications, presents some difficulties and
limitations in others. Here I develop a 3-D system based on the numerical integration
of the ray equations, which is more flexible for dealing with general complex structures

[Vel96].

5.3.1 The ray equations

The ray equations are well developed in the literature [Eli65, Cer87]. In their final form,

they may be written

Oyz = vsin @ cos ¢

Oy = vsinfsin €

Oz = vcos b (5.2)
0,0 = —cos 0 (g—;cosf + %sinf) + g—;’sin(‘)

v _: )
Ot = = (é sin § — écosf) ,

where 6 and ¢ stand for declination and azimuth angles which describe the direction of
the ray at every point of its trajectory (Figure 5.2), and v = v(x) is the wavespeed.
By solving the system of differential equations (5.2), it is possible to describe the ray
trajectory at every time ¢, the independent variable of integration. Given the appropriate
initial conditions, I solve equations (5.2) using standard ODE solvers such as Euler and
Runge-Kutta methods (see for example [PTVF92]). The numerical integration requires

the right-hand side of (5.2) to be continuous and v(x) to be twice differentiable. To handle
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<Y

Figure 5.2: The ray direction is described by declination # and azimuth £. For ¢ = 0,
these are the take-off angles.

discontinuities, I describe the model by a number of regions separated by arbitrary curved
interfaces. Rays propagate until they find a discontinuity where Snell’s Law applies.

For a ray passing from medium 1 to medium 2 at point x, one can write

s2zsl—l-{alvl—%—vi%—l—(sl-n)zll/z—(sl-n)}n (5.3)

where s; and s, are the slowness vectors on either side of the discontinuity, n is the unit
normal to the interface, and o = sign(s; - n) is called the orientation index. If the ray is

reflected, then vy = v; and o = —1, resulting

sy = s; — 2(s; - n)n. (5.4)

Slowness vectors are computed using

1
s = —(cos a, i+ cosayj+ cosa;, k), (5.5)
v
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where o, a,, and a, are the corresponding direction angles in rectilinear coordinates,

which are related with 6 and ¢ by

cos a, = sin f cos ¢
cos ay = sin @ sin ¢ (5.6)

a, = 0.

The initial conditions (¢ = 0) for solving system (5.2) are given by

x(0) = x, initial point
6(0) =0, initial declination (5.7)
£(0) = ¢&s, initial azimuth

where subscript s stands for source.

5.3.2 Intersection points

To take care of the interfaces that the ray propagation may encounter in its way to the
receiver, the intersection point between the raypath and the corresponding interface must
be found. This point, say x¢, is found by iteratively adjusting the timestep until the ray
coordinates lie right on the interface. Let x; and xjy; be the raypath coordinates at
times t; and txy, = tp + At respectively. The ray has crossed the interface of equation

z = f(z,y) if one of the two following conditions is satisfied:

{ zi < f(@k,ye) and  ziyr > f(@kt1, Yot), (5.8)

2zt > f(zr,ye) and  zey1 < f(@rt1, Yesr)-

Once an interface crossing has been detected, a root-finder is used to find the new A#

which yields zgy1 = f(@k+1,Yr+1). For this purpose, I define the function

9(At) = zri1 — f(Trt1, Y1), (5.9)
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which must be equal to zero (within a given tolerance) at the intersection point, x*. That

g(At) = 2 — f(z',y*) ~ 0. (5.10)

Since ¢g(0) = 2z — f(«k, yx), then the root of equation (5.9) is bracketed in the interval
[0, At].

The selection of an appropriate root-finder is very important. Robustness under
difficult situations is required because function g(At) may take any form. Also, the
convergence rate must be as fast as possible for best efficiency (note that every time
g(At) is evaluated, the ray equations must be advanced one stepsize At). The bisection
method never fails, but its convergence rate is very poor. A higher order approximation is
achieved with Brent’s method [PTVF92]. I chose this method because of its convergence
rate, robustness, and because the derivatives are not required (note besides that interfaces
may be discontinuous). Brent’s algorithm has quadratic termination in most cases and
is as robust as the bisection method [PTVF92|. In the worst cases, such as pathological
functions, Brent’s method takes a bisection step. In practice I have found that one to
three adjustments are enough to find the intersection point between the raypath and
the interface within a small tolerance. Once the intersection point has been found, the

current raypath coordinates and traveltime are updated accordingly:

Xk+1 = Xi,
{ . (5.11)
tht1 = tp + At

Here the slowness vector is updated using the reflection/transmission laws given in equa-
tions (5.3) and (5.4). Then the timestep is restored to its initial value and the ray propa-

gation continues with the new initial conditions. If more than one interface is crossed at
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a given timestep, the one whose corresponding adjusted timestep is smallest is selected
as the candidate interface for applying the reflection/transmission laws. The same kind
of iterative adjustment is done when the ray crosses any of the model boundaries. In this
particular case, the propagation is terminated.

The unit normal to the surface z = f(z,y) at a generic point x, is calculated by

_1(of.  of. RICANNEIAY
) [ )

which is needed when applying Snell’s Law at the intersection point. This requires the

1/2
: (5.12)

additional condition of differentiability, at least locally, of the interfaces.

5.3.3 Ray signature and stopping conditions

During the propagation, an index indicating the current region is saved and updated
after each interface crossing. This index i1s used to determine which velocity function
must be used in the integration of the equations (5.2). A flag for each interface is also
provided which indicates the decision to make in case the ray arrives at the interface
(see “Ray signature and stopping conditions” in Chapter 4). This allows us to model P-
and S-waves, or even a conversion between the two, or to force a reflection at any given
interface to simulate a reflector.

Note that there are various stopping conditions that may be implemented. The ray

propagation stops whichever of the following conditions occurs first:

1. the ray arrives at some model boundary,
2. the ray arrives at some prescribed interface (e.g. some target plane),

3. a refraction has been requested but total reflection occurred,



Chapter 5. Boundary Value Ray Tracing In Complex 3-D Media 114

4. the number of points in the raypath or the traveltime is greater than a predefined

value, etc.

In my experiments, conditions (1) and (2) are set by default. For simplicity, I locate all
sources and receivers on the model boundaries. In general, a refraction is requested at
all interfaces, except at some individual interface for modeling reflections or headwaves.
In case a refraction is not possible because the incident angle is beyond the critical angle
[negative square-root argument in formula (5.4)], a reflection is generated and this is
notified on output.

In summary, given an initial point and an initial direction the system described above
is able to propagate any ray provided the velocity and interfaces can be evaluated at any
point within the model boundaries, and provided a ray signature is specified a priori to
make a decision at each interface intersection. It is also required to know which region
is being traversed at any point. Raypaths honor bending in inhomogeneous regions and

Snell’s Law at discontinuities.

5.4 Solving the boundary-value problem (BVP) by means of SART

As already described in previous chapter for the 2-D case, the BVP is solved by means
of SART. In 3-D the procedure is analogous, being the number of degrees of freedom
the only fundamental difference. Of course, in this scheme I use a numerical ray-tracing
algorithm instead of a cell ray-tracing one. But this does not concern to SART, a system
which is independent of the selected IVP solver. The straight-ray construction applies
here too, in such a way that the raypath is forced to reach the desired endpoint. Direct

waves, reflections, headwaves, diffractions, etc., are treated similarly as in the 2-D case.
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L raypath

Figure 5.3: Ray tracing direct waves through a 3-D media using SART. At convergence
Xe = X,

5.4.1 Problem definition
Direct waves

Tracing direct waves is the simplest case and the basis for tracing the other types of
waves. Both source and receiver are fixed and the optimum take-off angles §°°* and £2F*
are to be found so that the total traveltime is a global minimum. The total traveltime is

written as

T:/xrsdl:Tse—l—Te,,. (5.13)

In equation (5.13), T, is the traveltime which is obtained after solving the IVP for
the given initial conditions. The second term in equation (5.13), T.,, is the traveltime

associated with the straight-ray construction (see Figure 5.3). Since there are two angles
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needed to determine uniquely the whole ray trajectory, traveltime 7' is a two-dimensional

function, thus

T = T(8,,¢,). (5.14)

which is in general multimodal and nondifferentiable. When 7' = minimum, Fermat’s
principle is satisfied and point X, coincides with the receiver. Thus, it can be seen that
the only difference between the 2-D and the 3-D case is that the whole final raypath is
now defined in terms of two unknowns instead of just one. If in the 2-D case a simple
exhaustive search could have been used to find the global minimum of the traveltime
equation (4.11), in the 3-D case the same procedure is not recommended for obvious
reasons, unless 7' is a very simple function. Unfortunately, 7" is in general multimodal

and nondifferentiable, which makes the optimization problem a difficult numerical task.

Reflected waves

The case of reflected waves again involves the minimization of a two-dimensional cost

function in terms of the two take-off angles:

Tsu + Tue + Ter, 1if the ray arrives to z = f(z,y)
¢ = P(4,,¢) = (5.15)

Traz, otherwise
where point x, is the point where the ray intersects the reflector, z = f(z,y), and Tz is
the maximum guessed value the total traveltime may take for all possible take-off angles.
As usual, the ray is propagated from the source with take-off angles 6, and &, until it
arrives to the reflector at point x, (see Figure 5.4). Here Snell’s Law of reflection is

applied and the propagation continues until the ray leaves the model boundaries at the
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z ¥

Figure 5.4: Ray tracing reflections through a 3-D media using SART. At convergence
X = X,. An alternative strategy is described in the text.

emerging point X.. Finally, this point is connected with the receiver using a straight line.
When total traveltime ® is minimum, X, coincides with x,.

As in the 2-D case, alternative strategies for dealing with reflected waves can be
devised. One of such alternative strategies starts the propagation from the unknown
point x,, on the reflector surface towards the source with take-off angles 8, and &,, also
unknowns. Then the raypath is completed by shooting towards the receiver starting at
x, with take-off angles 6/, and £/ . These angles can be expressed in terms of the slowness

vector s, and the unit normal to the surface, n, according to equation (5.4). Then

cos 8, = cos 0, — 2an,
(5.16)

sin 0! cos ¢!, = sin 0, cos &, — 2an,,

where
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a =Sy N = ngsinf, cos &, + nysin b, cos &, + n, cos b, (5.17)

is the dot product between the slowness vector and the unit normal. As a result, the

total traveltime becomes a four dimensional function

®' = @I(au, gu; Loy, yu) = Tuel + Tels + Tuez + Tezr- (518)

All raypaths correspond to reflections now, and there is no need for penalizing those rays
not undergoing any reflection as in the previous case. In equation (5.18), x., and X,
are the emerging points after shooting from x, with take-off angles (6,,¢,) and (6.,¢.)
respectively. The terms T¢,, and 7.,, are the traveltime contributions associated to the

corresponding straight-ray construction, as done for the direct wave case.

Normal rays The normal rays case is a particular case of reflections. The problem
can be cast as finding the optimum coordinates, (z,,y.), of the ray that travels towards
the source-receiver point with an initial direction which is parallel to the normal of the

surface at that point. That is, s = n/v. Take-off angles are then calculated from

cosb, =n,,
(5.19)

sin 0, cosé, = n,, (or sinf,siné, = ny).

Consequently, the total traveltime to be globally minimized is written as

® = ®(zy, ) = 2(Tue + Toy), (5.20)

again a two-dimensional function.
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Headwaves

Now the number of unknowns is four: the coordinates of the points the ray enters and
leaves the refractor: x, and x,. Actually, the ray is propagated starting at these two
locations towards the source and receiver respectively. As a result the final raypath is
composed of five portions, as described in Chapter 4 for the 2-D case. Figure 5.5 depicts
how SART handles a headwave in a 3-D media. Here I will assume the refractor is a plane
interface of equation z = ag + a1z + azy with velocity v, = constant. So, the raypath

connecting x, with x,, which is the shortest path, honors the parametric equation

r = )\, )\ € [m’UJ wv]
Y = Yu + bo(A — z,,) (5.21)
2 =2y +bi(A — )

where by and b; are constants given by

{ bo = (30 — %u)/(20 — 2u), (5.22)

b1 = (20 — 2u)/(Ty — Ty).
Slowness vectors s, (see Figure 5.5) at both points are expressed in terms of the

tangent vector to the parametric curve defined in equation (5.21):

1/2
1 (0=, Oy, Oz | (0= 2 Oy 2 0z\?
S, = 0P (8_)\1 + a—)\_] + a—)\k) ; P = l(a—)\) + (8_)\) + 8_)\ . (523)

At point x, the slowness vector follows the direction of this ray segment. At point x,,

the range of variation of A must be reversed, so that slowness vectors have opposite sign.

Computing the derivatives, it yields

_ﬁ(i + boj + b1k) at point x,
Sl B (5.24)

%(i + boj + b1k) at point x,
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Y

. refractor

Figure 5.5: Ray tracing headwaves through a 3-D media using SART. The ray travels
along the refractor with v = v,, from x, to x,. At convergence x., = x;, and x., = X,.

where

p = (1+0b2+ 0622 (5.25)

The corresponding take-off angles at the unknown points x, and x, are again com-
puted according to Snell’s Law (5.3) with ¢ = —1, taking into account that v; = v,, and
vy = v, V3 < ¥y, is the velocity right above the refractor at x,, or x, (I assume source and
receiver are always placed above the refractor).

Since s, is perpendicular to n,

s, -n=0. (5.26)

Then
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v

1 1\
s=s, — (—2 — —2) n (5.27)

From here the corresponding take-off angles (6,,¢,) and (6,,¢,) needed to continue the
ray propagation towards source and receiver respectively are derived easily from equations
(5.5) and (5.6). These take-off angles feed the IVP solver at each SART iteration, until
the optimum points x%* and x%* that globally minimize the total traveltime is obtained.

Total traveltime is written in terms of the four unknown coordinates:

¢ = @(wu, Yu; Lo, yv) = Tsel + Telu + Tu’u + T’uez + TEz’I" (528)

In this equation, the first and the last contributions to the sum correspond to the straight-
ray constructions, which at convergence go to zero. Term T}, is the traveltime along the
refractor from x, to x,. The remaining two terms are obtained after integrating the ray

equations as usual.

5.4.2 SART accuracy

As described in previous paragraphs, the global minimum traveltime is obtained after
minimizing, by means of VFSA | the appropriate cost function which defines a given wave
phase. In this section a brief discussion about the accuracy of the traveltimes obtained
using SART is given.

In SART, the ray equations are solved by means of standard ODE solvers, e.g. fourth-
order Runge-Kutta (RK). In general, traveltimes obtained by SART are very accurate
inasmuch as SA converged to the global minimum. The accuracy can be increased at any
desired level (within machine precision) by requiring greater accuracy in the calculation of

the intersection points between raypaths and interfaces, and by decreasing the integration
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stepsize. This solution-polishing process can be done only after SART convergence, so
that the computational cost added up as a result of this extra job is negligible. For
smooth velocity fields, a fourth-order RK method for integrating the ray equations yields
very accurate results (fourth-order RK is exact up to fourth-order). So large stepsizes
can be used with confidence for better efficiency. The only issue to be taken into account
1s that all interface crossings must be detectable at any stage of the ray propagation, and
that the intersection points must be found correctly by the iterative root-finder. This
means that if the stepsize is too large, some interfaces may be overlooked or the root-
finder may not converge to the appropriate solution when looking for the intersection
points (consider the case in which the raypath intercepts a given interface at more than
one point). These issues are generally of no concern when interfaces are planar (very large
stepsizes can be used here). But when interfaces are very irregular and there are many
of them, too large stepsizes should not be used blindly. So, there is a trade-off between
efficiency/accuracy and stepsize. When velocity fields within some regions vary rapidly,
the use of RK with adaptive stepsize is recommended. This feature is also implemented
in SART. Otherwise, RK with constant stepsize should be used for faster performance.
The main factor of error is perhaps associated with the distance between the actual
ray endpoint and the receiver (see for example [SK90]). However, this problem is virtually
eliminated by refining the solution after VFSA convergence, as will be explained below.
In summary, the ray-tracing system described so far can be made extremely accurate

provided all interface crossing are detected properly.

5.4.3 Refinement of the solution: a hybrid strategy

Due to the nature of its generating function, the convergence achieved by VFSA at
lower temperatures is faster than other SA algorithms. Despite this fact, taking 7., to

zero may take several iterations after reaching the global minimum neighborhood. At
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these low temperature stages, when the solution is close to the global minimum, SART
switches to a local optimization algorithm to make d?, = ||x. — x,||? < €4, for some small
value of ¢;. Here the best SA solution obtained so far is used as the initial guess for
the linearizing stage. The switch is done after the maximum number of SA iterations,
ITMAX, has been reached. This hybrid strategy allows SART to accurately compute the
global minimum traveltime in an efficient manner. Since the local optimization algorithm
is applied only after SA has converged close enough to the global minimum, problems
regarding instability and divergence associated with these methods are of no concern.
Any linearizing method can be used to minimize d.,. I selected two alternative algo-
rithms for doing the task: the method of steepest descent (SD) and a quasi-Newton method
(QN). I chose these two methods in part because none of them require the calculation
of the Hessian matrix (cost function second-order derivatives), but only the gradient.
Since in SART the gradient of the cost function is not available, it is approximated by
finite differences, which has been found to be accurate enough. The SD method is much
simpler in terms of coding and less computations are required in each iteration. How-
ever, as it is well known, the convergence is very poor (the rate of convergence of the
method of steepest descent with exact linear search is first order in general). Newton
methods have quadratic termination but require the computation of the Hessian matrix.
Quasi-Newton methods can have quadratic termination too without second derivatives,
and are economical on first derivatives and cost function evaluations when compared to
other higher-order algorithms. QN methods are usually more rapidly convergent, robust
and economical than conjugate gradient methods [Sca85], but require much more storage.

This is not a problem in SART, since the unknown variables are just a few.

The optimization problem at the refinement stage is written
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3

minimize ®(0,,&,) = ||x. — x,||* = Z:(ccz —z,,)%, (5.29)

=1
where z; are the coordinates of the emerging point, x., and z,, are the coordinates of the
receiver point, X,. Since equation (5.29) is nonlinear, the minimization is done iteratively.
At the beginning of iteration j-th, the current take-off angles estimates are (67, ¢7). The
j-th iteration then consists of the computation of a search vector (A#7, A¢?) from which

to obtain the new estimate (67*!, £¢771) according to

§i+l = 99 + o B3,
{ (5.30)

€ =€ + AL,
where o is obtained by linear search or other strategy. But the selection of the search
vector (A6 A¢?) is largely what distinguishes one method from another. In the SD
approach the greatest reduction in the cost function value is obtained in the direction of
the negative gradient, thus

'NE j : ‘9 : Iz ’
(AG) AL =V = Z —z,,;) 26, 22(:@—:{3”)% . (5.31)

The derivatives in the above equation are estimated using finite differences

{ 8331/893 = [331‘(93 —I_ €, 58) - mi(asa gs)] /6,
(5.32)

amz/aés—[ (9875 +6)_m( )]/6
where € 1s a small positive scalar. Once the search direction has been obtained, the scalar
o which measures the stepsize must be computed. For this purpose, I write the Taylor

expansion to first-order approximation

zi(0, + Ab,, €, + AE,) ~ z;(8,,¢,) + oPal, (5.33)
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where

a, = Aesa—e + Afsg 5 1 = 1,2,3. (534)

Replacing equation (5.33) into equation (5.29) and differentiating with respect to a, it

yields

— = QZ(wf +ddal —z,)al. (5.35)

Finally, setting % =0

== : (5.36)

(At

Quasi-Newton methods are based upon the fact that the Hessian matrix (or its in-
verse) is approximated with an updating formula which carries information about second
derivatives. There are various QN methods that use slightly different updating formulas
and linear search approximations. In particular I use the Broyden-Fletcher-Goldfarb-
Shanno algorithm [PTVF92], which is one of the most efficient QN methods. The details
can be found in [Sca85].

As mentioned above, the local optimization to solve problem (5.29) is only applied
when SART is very close to the global minimum (after ITMAX SA iterations). Locally,
the cost function d?, = |[x. — x,||? is a well-behaved function, and the convergence to
the global minimum is guaranteed. In practice a few iterations (two to eight) are enough
to take d?, virtually to zero within machine precision. SD method takes more iterations

that QN method, but in all the total number of cost function evaluations is about the

same in both cases. As a result the computational costs using either method are similar.
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Figure 5.6: Model 1: two-dimensional slice through the fault model in Figure 5.1. Labels
refer to the regions and interfaces listed in Table 5.1.

5.5 Numerical examples

In this section I test SART using two models representing 3-D geological structures:
Model 1 and Model 2. The first one represents a fractured layered subsurface with planar
interfaces and constant velocities within each region, which I call “fault model”. The
second one is called “salt model”, and represents a salt dome that bursts into a layered
media. Here interfaces are curved and velocities are not constant within all regions.
Though Model 1 is much simpler than Model 2 in terms of raypath and traveltime
behavior, both models are intended to illustrate the difficulties that may arise to solve
the two-point ray tracing problem in laterally varying 3-D media. For a given source-
receiver geometry, these models exhibit multipathing and complicated traveltime curves

that make the optimization problem a very difficult one. After showing SART results and
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Region | v = v(x) | Interface | z = f(z,y)
4 | Gmpy) | # (m)
I 1.5 1 30 — 0.2y
II 2.5 1 40 — 0.2y
I11 3.6 111 75 — 0.2y
v 5.0 v 115 — 1.6y
A% 3.0 v 40
VI 2.5 vi 50
VII 3.6 - -

Table 5.1: Model 1: velocities and interfaces defining the fault model shown in Figure
5.6.

drawing the attention to the multipathing problem, I present a brief analysis regarding
the number of iterations required to obtain the global minimum traveltime.

For simplicity, I located all receivers on some model boundary, so that the target
interface coincides with some of the planes defining the model boundaries. Distances and
coordinates are expressed in kilometers, velocities in kilometers per second, traveltimes

in milliseconds and angles in degrees.

5.5.1 Fault model

Model 1 is comprised of seven regions with constant velocities delimited by planar inter-
faces and a fault plane, as shown in Figure 5.1. For simplicity, I first take into account
a 2-D slice of the model: the plane z = 50 (Figure 5.6). I placed a source at (50,0, 70)
and produced a fan of rays with take-off angles 6, varying from 60° to 140° (¢, is fixed
at 90° so that all ray trajectories lie on the plane z = 50). The top panel of Figure 5.7
shows the resulting raypaths. The bottom panel of the same figure shows the wavefronts

for ¢t =5 ms, t = 7.5 ms, t = 10 ms, and so on. Since the velocity within each region is
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constant each wavefront is an arc of a circle with radius Y, v;¢;. It is clear from the graph
the presence of shadow zones and multiple arrivals to any receiver located either on the
surface or on the right model boundary. Due to incident angles beyond the critical one,
total reflected waves are also generated at some discontinuities.

Using a simple grid-search algorithm I have found all solutions to the BVP (source

fixed) corresponding to a set of 76 receivers uniformly distributed according to

X, = [50,100,i x b],  i=0,1,---,75 (5.37)

where o = 1.0 m is the geophone vertical spacing. In all cases the source was fixed at
(50,0,70). Figure 5.8a shows the resulting arrival times, and Figure 5.8b the correspond-
ing common-shot gather. For simplicity, amplitudes are not taken into account here.
The shot gather was constructed by convolving a zero-phase Ricker wavelet (sampling
interval At = 0.25 ms, center frequency fo = 500 Hz) with a reflectivity series made
of unit spikes located at the arrival times. Note that there are various nearly identical
arrivals. Later arrivals at depths between 40 and 50 m correspond to multiple reflected
waves (total reflection) generated at the low velocity region VI. Geophones at depths
below 67.5 m do not receive any arrival (shadow zone). For a better understanding, this
figure is to be viewed in conjunction with Figure 5.7, where raypaths and wavefronts are
shown.

By placing a receiver at (50,100, 16.5) (marked in Figure 5.8), I computed distance d
and traveltime T, equation (5.14), as a function of 6, (Figure 5.9a and 5.9b, respectively).
The nonlinearity of the objective functions and the complexity of the optimization prob-
lem are evident by observing the plots. Local minima, multipathing, and discontinuities
are all present in this simple two-dimensional model. Distance d has four zeros (multi-

pathing) and two extra local minima, as well as various discontinuities generated by the
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Figure 5.7: Model 1. Top panel: fan of rays with equally spaced take-off angles in the
range (60°,140°). Bottom panel: a series of wavefronts for ¢ = 5 ms, 7.5 ms, 10.0 ms,
etc. Note the presence of shadow zones and multiple arrivals.
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Figure 5.8: Model 2: (a) Traveltime vs geophone depth, and (b) common-shot section,
for a set of 76 source-receiver pairs. The source is fixed at (50,0,70). Amplitudes in the
shot gather are arbitrary.
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Ray # | 0, (deg) | ®, (ms)

1 70.16 35.986
2 87.44 36.410
3 108.21 35.915
4 125.90 | 34.714

Table 5.2: Model 1: multipathing in the fault model. The raypath number 4 exhibits the
absolute minimum traveltime.

velocity structure. Clearly, the multipathing problem cannot be obviated by minimizing
d, since there is no unique global minimum. The shape of curve T is similar to the shape
of curve d, but the former makes it possible to differentiate among those rays arriving to

the receiver. In effect, the curve has a single global minimum:

6, = 125.90°, Topt = 34.714 ms.

The other rays arriving to the receiver become local minima now. These raypaths are
plotted in Figure 5.10 (top panel), and their corresponding take-off angles and traveltimes
are summarized in Table 5.2. Note that two of them correspond to reflected waves due to
large incident angles at the deepest model discontinuity. In is important to point out that
in a tomographic experiment, for example, a failure to assign the correct trajectories to
the picked first-arrival traveltimes, may lead to a wrong interpretation of the underlying
velocity model. This is because the ray trajectories are very different and methods like
shooting or bending are not capable, in general, to provide the global minimum path.
Figure 5.10 (bottom panel) shows all optimum raypaths connecting the source and the
receivers distributed along the right vertical line. Note that 8 out of 76 geophones did
not receive any arrival (shadow zone).

In the previous two-dimensional example, an grid search is viable in order to find the
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Figure 5.9: Model 1: two cost functions for the fault model. (a) Distance d, and (b)
traveltime T, as a function of take-off angle #,. Azimuth ¢, has been fixed to 90°.

absolute minimum raypath in a reasonably number of iterations (as done implicitly for
constructing Figure 5.9). But in a three-dimensional model, where raypaths are specified
by more than one parameter, a grid search is not recommended for obvious reasons (see
section 5.6.3). In addition, the complexity of the cost function increases significantly,
particularly in complicated structures. Figure 5.11 shows traveltime 7' for the three-
dimensional fault model shown in Figure 5.1. Observe the complex topography of 7'.
What makes it difficult to globally minimize this function is not only the presence of local

minima, but also the great number of discontinuities generated by the model. SA appears
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Figure 5.10: Model 1: multipathing in the fault model. Top panel: the four plotted
raypaths satisfy the ray equations, but exhibit different traveltimes. The dotted raypath
is the SART solution. Bottom panel: a total of 68 receivers are linked with the same
source following the path with global minimum traveltime.
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Figure 5.11: Model 1: traveltime as a function of both take-off angles. Note the complex
topography. The surface is explored during the SA process to locate the global minimum.
to be a natural tool for solving this kind of nonlinear optimization problems. Convergence
was achieved long before a maximum of 500 iterations, as illustrated in Figure 5.12 for a
typical realization. Note that both take-off angles, 6, and ¢,, were involved in the actual

optimization. Figure 5.13 shows a scatter plot for the 500 annealing iterations.

5.5.2 Salt-dome model

Model 2 represents a salt dome with several layers and laterally varying velocities (Figure
5.14). A total of eight regions are delimited by nonplanar interfaces with cylindrical
symmetry. The same symmetry, however, is not observed for all the velocities. The
model is contained in the cube delimited by planes x = —50, z = 50, y = —50, y = 50,
z = 0 and z = 40, though the figure shows only a portion of the full model. For simplicity

consider first a vertical slice of the original model (the plane z = 0) and { = 90° for all
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Figure 5.12: Model 1: SART convergence after 500 iterations.
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Figure 5.13: Model 1: scatter plot for 500 annealing iterations.
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Salt-dome model (Model 2)

[ ] v=2.0+0.007z
[ ] v=224+0.0122
140.2
Bl v =225 Y0
v = 25 VA

B v=31
HHH v=4.0+0.1(z — 25)
B v-438

X v=5.5

Figure 5.14: Three-dimensional model with several nonplanar interfaces and eight regions
with constant and laterally varying velocities. Note the cartoon shows only a quarter of

the full model.

raypaths, so that all of them will lie on the same plane (see Figure 5.15 and Table 5.3).

I located a source at (0,—50,0) and produced a fan of rays with equally spaced
take-off angles in the range (35°,85°). Figures 5.16a and 5.16b show d and T, as a
function of 6,, for a receiver located at (0,50,0). The complexity of these two functions
i1s enormous. Function d exhibits eight zeros corresponding to eight rays arriving to
the receiver satisfying the ray equations. Besides there are more than ten extra local
minima and a high number of first- and second-order discontinuities. Figure 5.17 (top
panel) shows these eight raypaths, and Table 5.4 summarizes their traveltime and take-off
angles.

By inspecting the curves in Figure 5.16, the difficulties that a local minimizer would
have to face to find the global minimum are very clear (see section 5.6.3). Even using a
global optimization algorithm like VFSA/ function d is not the appropriate cost function

to choose. This is because it is impossible to differentiate among the various raypaths
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Region v = v(x) Interface z = f(r?)

7 (km/s) # (m)

I 2.040.0072 1 20/3 —0.5/(1 + r?)
11 2.2 +0.0122 i 40/3 — 2.5/(1 + 7?)
I | 2.25—0.002y(1+0.2y) | iii 60/3 — 5.0/(1 + %)
1AY 2.5 v 80/3 — 10.0/(1 4 r?)
v 3.1 v 100/3 — 15.0/(1 + r?)
VI 4.0+ 0.1(z — 25) vi 120/3 — 20.0/(1 + %)
VII 4.8 vii 12.5 + 5.0r*
VIII 5.5 viil 22.5 — 5.0r*

- - ix | 140/3 — 10.0/(0.01 + #?)
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Table 5.3: Model 2: velocities and interfaces defining the salt-dome model shown in
Figure 5.15. Interfaces are expressed in terms of 72 = (z? + y*)/400.

y (m)
0

3.75
v (km/s)

50

Figure 5.15: Model 2: two-dimensional slice through the salt-dome model in Figure 5.14.
Labels refer to the regions and interfaces listed in Table 5.3.
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Figure 5.16: Model 2: two cost functions for the salt-dome model. (a) Distance d, and
(b) traveltime 7', as a function of take-off angle #,. The shaded region in (b) is expanded
and shown in (c). Azimuth ¢, has been fixed to 90°.
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2.0 3.75 55
v (km/s)

Figure 5.17: Model 2: multipathing in the salt-dome model. Top panel: the eight plotted
raypaths satisfy the ray equations, but exhibit different traveltimes. The dotted raypath
is the SART solution. Bottom panel: a total of 41 receivers are connected with the same
source following the path with global minimum traveltime.
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Ray # | 0, (deg) | ®, (ms)
1 42.70 43.551
2 43.22 43.570
3 46.03 43.589
4 54.40 39.735
5 58.85 47.010
6 59.50 46.652
7 78.02 49.781
8 80.07 49.748
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Table 5.4: Model 2: multipathing in the salt-dome model. The raypath number 4 exhibits

the absolute minimum traveltime.

that connect source and receiver. On the contrary, the global minimum of 7' corresponds

to the desired raypath. A detailed inspection of curve T'(6,), reveals that the global

minimum lies in an very narrow valley of about 0.1 degrees wide, what makes the op-

timization problem even harder (see Figure 5.16¢ for a detailed plot of 7" in the global

minimum neighborhood). If take-off angle ¢, is also taken into account, the topography

of T'(0s,, €5) becomes so complex I was not able to plot it at all. Despite the rather difficult

optimization problem, SART found the true solution in about 500 iterations, as shown

in Figure 5.18 for a typical realization:

9, = 54.40°, &, = 90.00°

Finally, Figure 5.19 shows a scatter plot for the 500 annealing iterations.

Topt = 39.735 ms.

The behavior of the traveltime curves corresponding to other receivers is also very

complicated. I used a grid-search algorithm to find all the raypaths connecting the same

source and 41 different receivers uniformly distributed along the vertical line z

y = 50:

= 0,
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Figure 5.18: Model 2: SART convergence after 500 iterations.

X,i = [0,50,5 x k],  i=0,1,---,40 (5.38)

where A = 1.0 m is the geophone vertical spacing. The resulting traveltimes are shown
in Figure 5.20a, and the corresponding common-shot gather is shown in Figure 5.20b
(the shot gather was constructed as in the fault model case: a zero-phase Ricker wavelet
convolved with a reflectivity series containing isolated unit spikes at the arrival times).
It can be seen that there are multiple arrivals at all geophone depths. All arrivals follow
very different trajectories, but those whose traveltimes are a global minimum, basically
share the same first portion until they traverse the salt-dome structure. These raypaths
are shown in Figure 5.17 (bottom panel). Note that most of the solutions are within
one of two very narrow take-off angle ranges. Raypaths connecting geophones at depths
between 0 and 12 m, have take-off angles in the range (54.376,54.404). Raypaths con-
necting geophones at depths between 13 and 36 m, have take-off angles in the ranges
(53.499, 53.564). These raypaths were very difficult (expensive) to locate using the grid-

search algorithm, even though ¢, was known a priori. In next section a quantitative
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Figure 5.19: Model 2: scatter plot for 500 annealing iterations.

comparison, in terms of computational cost, between SART and the grid-search method

1s given.

5.5.3 Selection of SART parameters

Contrarily to standard linearizing methods, VFSA is not a black-box tool for solving any
nonlinear optimization problem. The user must obtain, usually through experimentation,
the parameters that produce the optimum results, both in terms of accuracy and effici-
ency. In Chapter 2 it has already been discussed how to select the initial temperatures
for the annealing process. Parameter temperatures are set equal to 1 in all cases, so that
the model space is widely sampled at the initial stages. The acceptance temperature is

set equal to the mean cost after evaluating the total traveltime for a set of NTO arbitrary
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Figure 5.20: Model 2: (a) Traveltime vs geophone depth, and (b) common-shot section,
for a set of 41 source-receiver pairs. The source is fixed at (0, —50,0). Amplitudes in the
shot gather are arbitrary.
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Model 1 Model 2
A (deg) | B (deg) | A (deg) | B (deg)
0, 60.0 140.0 35.0 85.0
& 50.0 130.0 60.0 120.0
Table 5.5: Parameter search ranges in VFSA.
take-off angles randomly selected. That is
— 7 1 .
{ fo=t= N1 % s (5.39)
To:i =1, 1=1,2

By default I set NT0=10. Other user-defined parameters to be taken into account are
the search ranges for each unknown. These are summarized in Table 5.5 for both Model
1 and Model 2. These are the values I selected based on the location of the source and
receiver, and on the geometry of the models.

The maximum number of iterations, ITMAX, is one of the most important para-
meters. It is very difficult to say a priori how many iterations it will take to find the
optimum path for a given source-receiver geometry and a given subsurface model. It can
be said, however, that the fewer the number of local minima and the smoother the cost
function, the fewer the number of iterations would be required for convergence to the
global minimum. Take a look at the convergence curves shown in Figures 5.12 and 5.18.
In the first case, convergence is achieved very soon since Model 1 is relatively simple
as compared to Model 2. The complexity associated with Model 2 is enormous and the
global minimum is very difficult to locate, as shown in previous section. Despite this fact,
convergence was obtained quite fast. However, the multimodality of traveltime 7'(,, ¢;)

sometimes delays convergence, especially when local and global minimum traveltimes are
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Model | tolerance | misfit (ms) | mean | std. dev. | in band | 7., (ms)
1 2.0 % 35.408 168 145 93 % 0.536
1.0 % 35.061 208 112 92 % 0.287

0.1 % 34.749 437 136 90 % 0.030

2 2.0 % 40.529 770 552 95 % 0.978
1.0 % 40.132 887 606 91 % 0.268

0.1 % 39.774 | 1236 395 90 % 0.014

Table 5.6: Mean and standard deviation of the number of SA iterations required to
achieve a specified misfit after 200 realizations. Global minimum traveltimes for Model
1 and Model 2 are 34.714 ms, and 39.735 ms, respectively.

very similar (this is the case of Model 1), or when the global minimum is in a very small
region of the model space (this is the case of Model 2). This is illustrated in Figure 5.21,
where I have plotted the convergence curves for 20 independent realizations. Note the
various “plateaus” in the convergence curves corresponding to local minima.

To provide a better insight about the number of iterations that are required to reach
the global minimum, the following experiment was conducted. SART was re-run 200
times using different seeds, for both Model 1 and Model 2, keeping the same source-
receiver geometries. Since the global minimum in each example is known, it was possible
to obtain the mean number of iterations required to reach the global minimum, within
a certain accuracy. Of course, in this experiment, the linearizing stage was not applied,
and SART stopped after achieving the desired misfit. The results of the computations

are shown in Table 5.6. The misfit shown in column 3 is defined as

misfit = T,y X (1 + tolerance), (5.40)

where T,,: is the global minimum traveltime, and “tolerance” is tabulated in column
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Figure 5.21: SART convergence for 20 independent realizations. Note the plateaus cor-
responding to local minima.

2. As expected, the mean number of iterations increases with the desired accuracy. In
the salt-dome case (Model 2), this number is much larger than in the fault model case
(Model 1), for the associated cost function is much more complicated. Figure 5.22 shows
the dispersion plots of the number of iterations for each example. It can be seen that
most of the realizations (above 90%, see column 6 in Table 5.6) fall within the horizontal
bands. These bands are centered at the mean number of iterations, and their widths

equal two times the standard deviation.
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Figure 5.22: Dispersion plots of the number of iterations required to reach the global
minimum within a given accuracy. See text for explanation.

As a result of this analysis, it can be said that setting ITMAX=1000 for Model 1, and
ITMAX=3000 for Model 2, is enough to obtain the global minimum with a very high
confidence. Actually, above 90% of the realizations converged using much smaller values.
Most of the outliers that are present in the dispersion plots (number of iterations well
above the mean plus one standard deviation), correspond to SA runs where the solution
stacked in difficult local minima for many iterations before being able to escape (the
plateaus in Figure 5.21). In Model 1, for example, the difficulty arises from the fact that
two local minima are within only 4% of the global minimum (see Table 5.2). In Model

2, the global minimum is located in a very narrow valley, while various local minima are
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situated in a wide valley with low traveltimes (see Figure 5.16b and c). For the sake of
completeness, the last column in Table 5.6 shows the mean traveltime corresponding to
the straight-ray construction.

Finally, there are a few other tunable parameters to be set in SART. Such is the case

of

1. Tio: tolerance traveltime. If T., > Tj, after ITMAX iterations, the SA run is

repeated using a different seed. Default value: 1.0 ms.

2. MAXREPEAT: maximum number of times the SA run is repeated before giving

up. Default value: 3.

3. ITMAX _LIN: maximum number of iterations for the linearizing stage. Default

value: 15.

4. €4 tolerance distance for the linearizing stage. Default value: 1 x 107° m.

The first two parameters, together with ITMAX, are related to the SA optimization

stage. The remaining two parameters concern exclusively to the linearizing stage.

5.6 SART performance: analysis and discussion

In this section I shall discuss some important aspects concerning the efficiency of various
SART subprocesses, and methods to further improve its overall performance. I will
also make a comparison with a standard grid-search algorithm, and with a multistart
linearizing procedure. These two methodologies may be viewed as particular cases of

shooting techniques.
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5.6.1 SART subprocesses efficiency

It is a commonly known fact that SA-based algorithms for the optimization of nonlinear
problems are more expensive, in terms of computational cost, than gradient-based meth-
ods. SART is not an exception to the rule, even though it uses VFSA. The price to be
paid in order to provide a reasonable certainty on finding the global minimum is given
by the number of iterations required for convergence, as shown in previous section (see
Table 5.6).

To visualize the efficiency of various SART subprocesses under different conditions,
the ray-tracing method was applied to both Model 1 (Figure 5.1) and Model 2 (Figure
5.14) using different settings. In the first case, a source was located at (5,5,70) and
25 receivers were distributed across the surface, z = 0. In the second case, the source
was put right below the salt dome at (—25,0,35), and 25 receivers distributed across the
surface, too. The resulting 3-D raypaths are plotted in Figures 5.23 and 5.24 respectively.
SART was repeated using two different constant timesteps in the RK integration. The
FORTRAN codes were compiled using the “-pg” option (profile-debugging mode) so
that the amount of time spent in each subroutine could be extracted from the resulting
executable code. Table 5.7 summarizes some of the profile values obtained in that way®.

The tabulated values in each row have the following meaning;:

1. TT: total computational time (in seconds) required to obtain the 25 optimum
raypaths.
2. rays/s: number of traced rays per second (i.e. 25/TT).

3. k: mean raypath length (in points).

4. COST: percentage of T'T spent at evaluating the cost function.

1The results were obtained on a 90MHz PC-Pentium, running under Linux with f2c.
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Figure 5.23: Model 1: multiple ray tracing in the fault model. (a) 25 optimum raypaths
obtained by SART. The source is located at (5,5,70). (b) Raypath projections onto
various planes.
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Figure 5.24: Model 2: multiple ray tracing in the salt-dome model. (a) 25 optimum
raypaths obtained by SART. The source is located at (5,5, 70). (b) Raypath projections
onto various planes.
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5. INT': percentage of T'T spent by the numerical integration of the ray equations.

6. CROSS: percentage of T'T for checking for interface crossings, finding intersections

and evaluating Snell Law.
7. STRGHT': percentage of T'T spent in the straight-ray construction subroutines

8. LIN: percentage of T'T spent in the linearizing optimization stage (the method of

steepest descent for polishing the SA solution).

9. TTruer/ TTrK4: ratio of TT using Euler and fourth-order RK methods for integrat-

ing the ray equations.

10. TTrg2/TTrras: ratio of TT using second- and fourth-order RK methods for in-

tegrating the ray equations.

In SART, each iteration involves the solution of the ray equations for a given set of
initial conditions. Traveltime 7., along the straight-ray construction needs to be com-
puted, too. At each timestep, the algorithm also checks whether the ray has crossed any
model interface. Usually, this procedure, along with the calculation of the corresponding
intersection points, is a very time-consuming stage, since all or some interfaces must be
evaluated at every point of the ray trajectory. When At is small and/or the number of
interfaces is large, this process may account for the major part of the total computational
time spent in each iteration. All these procedures are involved in the evaluation of the
cost function at each iteration. This is by far the most time consuming process of SART,
accounting for about 95-99% of the total computational cost, as shown in Table 5.7 (row
labeled COST).

It is interesting to see the percentage of T'7T" spent by some of the subprocesses involved

in the evaluation of the cost function, according to the different models and stepsizes.
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Model 1 Model 2

At 1.0 | 10.0 | 0.5 | 3.0
T 43.2 | 18.1 | 65.6 | 43.6
rays/s 06| 14| 04| 0.6
k 434 | 741423 |11.1

coST 98.1 | 95.3 | 98.9 | 98.4
INT 64.7 | 48.5 | 50.7 | 51.1
CROSS 18.7 | 33.7 | 32.0 | 52.0
STRGHT |10.9 | 19.7 | 22.6 | 22.0
LIN 34| 25| 20| 20

TTEue/TT | 0.51 | 0.64 | 0.62 | 0.62
TTrrs/TT | 0.68 | 0.76 | 0.75 | 0.74

Table 5.7: SART profile using fourth-order RK integration. The first row shows the total
computational time, 77T, in seconds. Rows 4 to 8 show the percentage of 7'T" spent in
various subprocesses. See text for explanation.
For example, take a look at row I NT in the table. This subprocess is the most expensive
one in most cases (above 50% of T'T'), especially for At small. However, when the number
of interfaces is large (as is the case of Model 2), CROSS starts getting relevant and even
exceeds INT in terms of computational effort when At is large (52.0% against 51.1%
in the last column of the table). This is because the number of iterations performed by
CROSS at each interface crossing is almost independent of the integration stepsize.
The profile also yields other interesting results. The straight-ray construction subpro-
cess, STRGHT, which involves the calculation of the traveltime between the emerging
point and the receiver, accounts for about 10-20% of T'T". Finally, subprocess LIN takes
only about 2-3% of T'T', what is a small value as compared with the other subprocesses.

As a conclusion of this analysis, it can be said that the number of interfaces, and their
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complexity, plays a key role in the performance of SART. For models with no interfaces,
the overall computational time would be significantly reduced. An important reduction
in the overall computational time may be obtained by using faster numerical methods at
no expense of accuracy when velocities are smooth functions. This point will be discussed

in detail below.

5.6.2 Further improvement of SART efficiency
Lower-order integration

A significant overall improvement of SART performance can be obtained if the compu-
tational cost is reduced in the most time-consuming subprocess, namely /NT'. This can
be accomplished using a lower-order numerical integration algorithm, especially when ve-
locity fields within each region are very smooth functions. For example, the step’s error
in the simple Euler method is O(At?), which is zero when the velocity is constant. Euler
method (see for example [PTVF92]) requires a single evaluation per step of the right-
hand side of equation (5.2), whilst fourth-order RK requires four. Second-order RK can
also be used. It requires two evaluations per step of the derivatives, and the associated
error is O(At?). As a result, a significant overall reduction in efficiency can be expected.
Appendix C provides a formulae to estimate the ratio between the total CPU time after
using two different numerical integrators. For instance, the saving in computational cost
is reduced by a factor of two if Euler method is used instead of 4th-order RK in Model

1 with At = 1.0 s (see last two rows in Table 5.7 for estimated ratios).
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Static versus dynamic integration

In SART, the integration of the ray equations has two options: static integration and
dynamic integration. In the first case, the user must supply which method to use through-
out. In the second case, each model region is given a flag number indicating which method
must be used for that particular region. In this manner, every time the ray enters a new
region, the appropriate method is automatically selected for optimum performance ac-
cording to the velocity field smoothness (e.g. in the salt-dome model, use Euler for regions
IV, V, VII, and VIII; second-order RK for regions I, IT and VI; and third-order RK for
region IIT). The same static/dynamic concept applies to the straight-ray construction?.

Table 5.8 shows the profile values obtained after using Euler method (first four
columns) instead of fourth-order RK (Table 5.7), and using dynamic integration (fifth
and sixth columns) for the salt-dome model. The results show that the improvement
in the overall performance estimated using formula (C.2) is a fairly good approximation
to the actual values. In effect, last row of Table 5.8 shows the ratios of the total com-
putational times using Euler and fourth-order RK respectively. These values are to be
compared to the estimations shown in Table 5.7 (row labeled T'Tgye,/TT). Notice also
how subprocess INT now surrenders its protagonist role to subprocess CROSS in all
the runs. It becomes the most time-consuming subprocess, now, even for Model 1 that
has only six planar interfaces. This suggests that SART efficiency will be significantly

greater for models with no interfaces or just a few.

Collecting previous cost function evaluations

Whenever more than one BVP is to be solved for a given experiment, it seems reasonable

to take advantage of previously computed cost functions to improve next SA runs. This

2Gince at convergence T, goes to zero, the accuracy at this stage is not very important and Euler
method can be used in all cases. Nevertheless, the user can select any method at this stage.
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Model 1 Model 2 Model 2
(static) (static) (dynamic)

At 1.0|100| 05| 3.0 05| 3.0

TT 20.6 | 10.1 | 42.2 | 23.2 | 44.9 | 23.6
rays/s 1.2 25| 06| 11| 06| 1.1

coST 96.5 | 92.3 | 97.4 | 97.0 | 98.1 | 96.5
INT 23.1 1159|153 | 16.1 | 14.6 | 15.2
CROSS |41.2]39.3|39.4|52.6 |40.8 | 53.2
STRGHT |19.9 | 20.0 | 34.5 | 27.2 | 33.8 | 274
LIN 32| 28| 16| 21| 16| 2.0

TT/TTrks | 0.48 | 0.56 | 0.64 | 0.53 - -

Table 5.8: SART profile using static integration (Euler method in this case) and dynamic
integration.

1s particularly useful for source-receiver pairs sharing the same source point. At each
cost function call, not only is the cost function associated with the source-receiver at
hand evaluated, but also the cost functions associated with all remaining source-receiver
pairs. In turn, the optimum solution to each pair is updated accordingly. When the
next pair is considered, the computations already done for all the previous pairs are
taken into account. This procedure allows one to require fewer iterations to reach the
global minimum than running SA for each pair independently. In the examples below,
the maximum number of iterations for the last source-receiver pair is set, by default,
equal to half the maximum number of iterations for the first source-receiver pair. For the
other receivers, ITMAX varies linearly between these two values. Since the most time
consuming process is associated with the first portion of the raypath (from the source,
Xs, to the emerging point x.), for a moderate number of receivers with common shot, in

general this strategy leads to a significant overall speedup, though the evaluation of those
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extra cost functions contributes to increase the computational cost of each individual run.

5.6.3 Comparison with other ray-tracing methods

In this section I will make a comparison, in terms of computational cost, among SART,
a simple grid-search algorithm, and a multistart linearizing procedure. The grid-search
method consists of performing an exhaustive search on a regular grid that spans the
take-off angles ranges, and evaluating the cost function at each point. The lowest value
corresponding to each source-receiver pair is then selected, and the steepest descent (SD)
method is finally used to refine the solution. In this way, the global minimum can be
located provided the discretization of the take-off angles is dense enough. This method
will be called GRID. The multistart procedure, MULTI, simply applies the SD method
starting from different initial take-off angles selected at random from the given search
ranges. The optimum take-off angles are then chosen as those that produce the lowest
cost function values. For the comparison, SART is run in two flavors. SART1 solves
the optimization problem for each source-receiver pair independently. SART2, collects
information corresponding to previous cost function evaluations and uses this information
to improve the current solution, as explained above.

In the experiments, both Model 1 and Model 2 shown in previous sections are used.
Several source-receiver pairs are defined in each case, and the optimum take-off angles
are searched using SART, GRID, and MULTI, using various ITMAX, grid densities,
and number of restarting points, respectively. The comparison is done for 2-D and 3-D
experiments. In the first case, only take-off angle 6, is searched, while ¢, is fixed and
known a priori. Here, the acquisition geometry is that used in Figures 5.10b and 5.17b.
That is, all geophones uniformly distributed along the right-hand side borehole. In the
3-D case, both 6, and &, are searched. Here, I use two acquisition geometries: (1) the one

used in the 2-D case (i.e. aligned geophones along right well), and (2) the one depicted
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2-D 3-D, case 1 3-D, case 2
Method | PAR | ray/s | 1.0 % | PAR | ray/s | 1.0 % | PAR | ray/s | 1.0 %
100 | 22.90 | 94.4 | 100 | 16.58 | 82.4 | 100 | 17.86 | 76.8
SART1 250 | 11.26 97.3 | 250 | 872 | 91.2| 250 | 10.42 82.4
500 535| 99.1| 500 | 4.96 | 91.8| 500 | 5.81 | 91.2
1000 2.80 | 99.7 | 1000 | 2.55 | 96.5 | 1000 | 2.94 | 98.4
100 | 27.20 | 99.1 | 100 |20.61 | 944 | 100 | 20.83 | 87.2
SART2 | 250 | 12.83 | 100.0 | 250 | 9.58 | 96.2 | 250 | 10.05 | 90.4
500 7.08 | 100.0 | 500 | 5.96 | 97.6 | 500 | 521 | 96.8
1000 3.76 | 100.0 | 1000 | 3.24 | 99.4 | 1000 | 2.75 | 99.2
1.0 | 343.43 94.4 0.9120.73| 95.6 1.7 | 20.11 88.0
GRID 0.5 30088 | 96.5| 0.6 1097 | 98.2| 1.0| 7.14| 89.6
0.2 | 241.13 99.4 04| 489 | 98.7 0.4 | 4.55 94.4
0.1]162.68 | 100.0 | 03| 2.75| 99.2| 06| 2.63| 96.0
10 | 23.73 97.9 10 | 21.94 | 86.8 15 | 14.71 87.2
MULTI 20| 11.14 99.1 25| 8.72| 929 25| 9.26 94.4
40 5.60 | 100.0 40 | 4.86 | 97.9 60 | 4.10 | 99.2
80 2.80 | 100.0 70 | 298| 985 | 100 | 2.63 | 100.0

158

Table 5.9: Model 1: comparison of SART with other methods in the fault model. PAR
equals ITMAX, Af, (and A¢;), and number of starting points for SART, GRID, and

MULTI, respectively.

in Figures 5.23a and 5.24a (i.e. geophones distributed across the surface plane).

I run SART1 and SART2 with various ITMAX and measured the total CPU time

required to find all solutions®. I also measured the CPU time required by GRID for

various Af, (and A¢,), as well as the CPU time required by MULTI with different number

of starting points (ITMAX LIN=5 by default). For statistical purposes, each run was

repeated 5 times using different seeds, or slightly shifted grids when running GRID. In

3The CPU time was obtained by compiling the codes with the “-pg” option. This compiling option
invokes a runtime recording mechanism that makes profiles by procedure.
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Figure 5.25: Comparison of SART with other methods for both the fault model (solid
line) and the salt-dome model (dashed line). (a) 2-D experiment; (b) 3-D experiment,

case 1; (¢) 3-D experiment, case 2. Data is shown in Tables 5.9 and 5.10. See text for
details.

SART2, ITMAX was kept constant in Model 1 (3-D, case 2 only), and in Model 2 (all
cases). Otherwise, ITMAX decreased linearly to half the number of iterations for the
first source-receiver pair, as explained above. The results are summarized in Table 5.9,
for Model 1, and Table 5.10, for Model 2. Also, the tables show the percentage of rays
that converged to the actual global minimum within a 1% tolerance. These numbers are
a measure of the effectiveness of the algorithms. The actual global minimum raypaths
for each source-receiver pair are shown in Figures 5.10b and 5.23a, for Model 1, and

in Figures 5.17b and 5.24a, for Model 2. Figure 5.25 plots data in previous tables for
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each experiment. Note that in Model 1 (first acquisition geometry), there is a shadow
zone for z > 67.0 m, approximately. So, the total number of rays in these experiments
was b X 68 = 340. The total number of rays for the second acquisition geometry was
5x25 = 125. In Model 2, these numbers were 5 x41 = 205, and 5 x25 = 125, respectively.

One obvious conclusion is that the rays traced per second decrease and the effective-
ness increase with the number of iterations in SART, the density of the grid in GRID, and
the number of starting points in MULTI. In Model 1, 2-D experiment, GRID outperforms
both MULTI and SART by about one order of magnitude in terms of CPU time. GRID
computes 200-300 rays per second to reach about 98 — 99% effectiveness, while SART2
computes 20-30, only. When the model becomes more complex, such as in the salt-dome
case, SART?2 attains the same degree of effectiveness and efficiency than GRID. Now the
number of traced rays per second decreases to about 1 ray/s for 98-99% effectiveness. To
obtain this effectiveness level, SART2 required ITMAX of about 100, for Model 1, and
1000 for Model 2. For GRID, Af#, = 0.5 was enough in Model 1, but it should be made
as small as 0.0015 in Model 2, so that the global minima were not missed. On the other
hand, both SART1 and MULTI are slower and take more iterations to reach a certain
effectiveness than SART2 and GRID (Figure 5.25a), especially in Model 2.

In the 3-D experiments, first acquisition geometry, things are different (see Figure
5.25b). In Model 1, GRID is still best, but SART2 attains almost the same efficiency
and effectiveness. MULTI is not a bad option for the slowest runs (5 rays/s), and produces
98% effectiveness, like GRID and SART2, when it is restarted 40 times. SART requires
ITMAX of about 500, and GRID Af, ~ 0.4. In Model 2, SART2 requires 2000-3000
iterations to reach these levels of effectiveness (0.3 rays/s), while SART1 barely reaches
80% after 4000 iterations (0.15 rays/s), GRID as low as 40% with Af, = 0.1 (0.1 rays/s),
and MULTI misses 9 out of 10 global minima at a low rate of 0.13 rays/s. In the case of

MULTT and GRID, these numbers are unacceptable. Note that here the cost functions
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2-D 3-D, case 1 3-D, case 2
Method | PAR |ray/s | 1.0 % | PAR | ray/s | 1.0 % | PAR | ray/s | 1.0 %
300 | 2.12| 454 | 1000 | 0.53 | 35.1| 300| 2.81| 864
SART1 750 | 0.93 | 66.3| 2000 | 0.31| 62.0| 750 | 1.28 | 88.8
1500 | 0.35| 80.0 | 3000 | 0.18 | 74.6 | 1500 | 0.72 | 92.8
3000 | 0.23 | 82.4| 4000 | 0.14| 77.8| 4000 | 0.24 | 96.8
300 | 1.72| 97.1| 1000 | 0.79 | 96.6 | 300 | 2.84 | 88.8
SART2 750 | 1.08 | 98.3| 2000 | 0.37| 97.1| 750 | 1.40 | 89.6
1500 | 0.45| 99.3 | 3000 | 0.26 | 98.5 | 1500 | 0.67 | 93.6
3000 | 0.31 | 100.0 | 4000 | 0.19 | 99.0 | 4000 | 0.27 | 100.0
0.0030 | 1.98| 96.1| 0.30 | 0.72| 17.1| 25| 3.05| 864
GRID |0.0015 | 0.99 | 99.0| 020 | 0.34| 283 | 15| 1.18| 89.6
0.0007 | 0.47 | 99.5| 0.15| 0.18 | 31.7| 1.0| 0.54| 92.0
0.0004 | 0.29 | 100.0 | 0.10 | 0.09 | 39.0| 0.7| 0.27| 93.6
25 | 2.28 34.6 | 100 | 0.44 4.4 25| 2.60 66.4
MULTI 50 | 1.13 | 57.6| 150 | 0.31 7.3 60 | 1.26 | 79.2
150 | 0.37 | 84.4 | 250 | 0.20 9.8 | 120 | 0.62 | 84.8
200 | 0.25| 884 | 350 | 0.13| 12.7| 300 | 0.24 | 92.0
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Table 5.10: Model 2: comparison of SART with other methods in the salt-dome model.
PAR equals ITMAX, A6, (and A¢,), and number of starting points for SART, GRID,
and MULTI, respectively.

are very complex, and SART2 outperforms all other methods by far.

In the case of the second acquisition geometry, 3-D experiment, the results of the

computations show that almost all methods perform well in both models (see Figure

5.25¢). In Model 1, all methods except GRID attain at least 98% effectiveness at rates

of about 3 rays/s. In Model 2, only SART2 reaches these levels of effectiveness at a rate

of 0.3 rays/s, SART1 reaches 97%, and GRID and MULTI keep below 94%.

One can conclude that for relatively simple 2-D models, GRID is best. In simple 3-D
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2-D 3-D, case 1
Model | N, | SART2 | GRID | MULTT | SART2 | GRID | MULTI
1 0.08 0.13 0.13 0.42 5.12 0.25
10 0.32 0.16 0.78 1.67 4.99 1.91
25 0.79 0.18 2.01 4.75 5.60 5.40
1 50 1.77 0.25 4.72 9.75 6.01 8.48
100 3.83 0.28 7.86 22.22 7.06 16.71
150 6.15 0.52 13.25 36.06 7.67 25.84
200 8.98 0.64 16.67 56.49 9.89 34.02
250 13.29 0.90 20.58 79.19 | 10.16 42.73
1 0.58 | 27.77 4.24 3.35 - 39.87
10 4.29 | 27.37 53.02 28.77 - -
25 10.56 | 28.16 - 66.62 - -
2 50 21.73 | 28.34 - - - -
100 44.04 | 30.03 - - - -
150 68.50 | 29.77 - - - -
200 92.52 | 31.01 - - - -
250 - | 36.53 - - - -
1 - 100 | 0.200 20 750 | 0.600 40
2 - 400 | 0.002 320 2300 - 2700
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Table 5.11: Comparison of SART with other methods for different number of receivers,
N,. The values indicate CPU time (in seconds) required to find all global minima with
1% accuracy and 98% effectiveness (except Model 1, 2-D case, where the resulting effec-
tiveness was 99%). Values greater than 100 s were not computed. Last two rows show
ITMAX, A8, (and A¢,), and number of restarting points used to achieve the desired
effectiveness level in SART2, GRID, and MULTI, respectively.
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Figure 5.26: Comparison of SART with other methods for different number of receivers.
(a) Fault model. (b) Salt-dome model. Data is shown in Tables 5.11.

models, all methods work well, and SART1 is the less effective. In complex situations,
SART is the best option, especially in the 3-D case. Here GRID and MULTI are very
ineflicient, since there are two degrees of freedom. This is not a big obstacle in SART.
What makes SART less efficient in 3-D than in 2-D experiments is the complexity of the
model (number of discontinuities, smoothness of the velocity fields, etc.), and not the
fact that the number of degrees of freedom is doubled. In MULTT and GRID, both issues
play a key role in terms of efficiency and effectiveness.

It is important to notice that the number of rays sharing the same source to be
traced needs to be considered in this quantitative comparison of methods. If one were
to compute a single ray, SART would be much more efficient than GRID and MULTI,
for a given effectiveness level. On the other hand, the larger the number of rays with the
same source, the more efficient GRID would be relatively to SART and MULTI. Figure

5.26 and Table 5.11 illustrate this point. Here, all computations were done so that the



Chapter 5. Boundary Value Ray Tracing In Complex 3-D Media 164

resulting effectiveness to find the global minima within a 1% accuracy was 98% (except in
Model 1, 2-D case, where the effectiveness was 99%). In general, the CPU time increases
linearly with N, (number of receivers) in both SART and MULTI. On the contrary, the
CPU time in GRID is rather independent of the number of rays to be traced, as expected.
This 1s because the cost function at all grid nodes needs to be evaluated once, for any
value of N,. In SART, for example, the SA run is repeated for each source-receiver pair
independently (though SART2 collects information corresponding to different runs to
improve next solutions, as explained above). In simple 2-D models (Figure 5.26a, solid
line), GRID is much more efficient than SART and MULTT in all cases, except for tracing
a single ray. In complex 2-D models (Figure 5.26b, solid line), GRID is more efficient
than SART and MULTTI only for N, ~ 25. In 3-D, things are different. Now, SART
1s the most efficient method, even for tracing large numbers of rays in complex models
(Figure 5.26b, dashed line). In simple 3-D models (Figure 5.26a, dashed line), GRID is

superior to SART only for tracing more than 60-70 rays with the same source.

5.7 BVP as a constrained nonlinear optimization problem: a discussion

5.7.1 Straight-ray construction drawback

As mentioned in previous chapter, the straight-ray construction may lead to unrealistic
raypaths arriving at earlier times than any other realistic path. Even thought the total
traveltime is a global minimum, it is possible in some cases that the resulting raypath
corresponds to a path not satisfying the ray equations at all points. One can think of
a two-layer model where the velocity in the top layer is much lower than the velocity
in the bottom one. Let source and receiver be located, for example, right above the
discontinuity in the low velocity layer as shown in Figure 5.27. Clearly, the “unrealistic”

critically refracted ray propagating through the high velocity medium arrives earlier than
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Figure 5.27: Two-layer model where the traveltime of an “unrealistic” raypath is smaller
than that of the true (realistic) raypath.
the expected one if vy > v;. This apparent difficulty will be eliminated in the following

reformulation.

5.7.2 Alternative formulations

The boundary-value ray-tracing problem can be viewed as a constrained global optimiza-
tion problem. In the two-point ray tracing case, the function to be globally minimized is
the traveltime from x, to x., and the constraint is that x. must coincide with x,, within a
given tolerance. The set of parameters that satisfy the constraint is called feasible region.

Put it mathematically,

minimize Tl :/ ) ds, subject to d < dyq, (5.41)

v(x)
where d is the distance between x. and x,, and d;,; is a tolerance distance. Both distances
are measured, for example, along the boundary plane. Since the traveltime usually

represents an observation with a certain error, the optimization problem can be expressed

in terms of a tolerance traveltime T};:
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Xe Xr ]_
minimize T, = / ds, subject to T, = / ds < Ty, (5.42)
xs v(x) x. v(x)
The tolerance traveltime is related to the tolerance distance by
dtol ~ T)Ttola (543)

where ¥ is some mean velocity around the receiver point. Note that in the previous
formulation the straight-ray construction is not explicitly taken into account, except
for the fact that the integration involved in the constraint is done along a straight line
segment connecting X, and x,. Problem (5.42) is nonlinear in both the cost function and
the constraint terms (except for some simple form of the velocity field, for which the path
is known) but also multimodal and nondifferentiable in general. This is a rather difficult
optimization problem.

In standard shooting methods, the optimization problem reduces to solving

d =%, —%|| < dr. (5.44)

Although this formulation seems much simpler, it is necessary to find all minima of
equation (5.44) for which d < d;y to decide later which one corresponds to the global
minimum traveltime.

In SART 1 solve (5.42) using VFSA, taking special care to properly incorporate the
constraint. For this purpose, I transform the constrained optimization problem (5.42)
into an unconstrained one. This can be done in several ways. The most direct way
of incorporating constraints in a SA optimization problem is to reject those proposed

models that do not satisfy the constraint. That is, during the perturbation stage of the
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SA process, random perturbations are generated until the proposed configuration satisfies
the constraint. Since usually 7}, is very small, and so is the feasible region, this strategy
may be extremely inefficient. This is because almost all proposed configurations will not
satisfy the constraint, especially during the first stages of the process when temperature

is relatively high. Alternatively, as in the case of tracing reflected waves, I can define

Tse ’ Ter < Ttol;

8(8,,¢,) = { (5.45)

Tnaz, otherwise,

where Tynae > T for all possible take-off angles. In this formulation, all proposed con-
figurations are acceptable. The decision whether to accept or reject a trial configuration
is made by the Metropolis criterion instead. Again, since T}, is usually very small,
cost function (5.45) is very difficult to optimize. This function is basically a flat surface
with a set of “holes”, each one corresponding to a beam of rays satisfying the constraint
(multipathing).

A better alternative is to define the cost function

T357 Ter S Ttol;
®(4,,¢5) = (5.46)

pTe., otherwise,

where p is a constant, and T is the traveltime after solving the IVP. I chose p so as to
guarantee that ®[T., < Tiy] < ®[T., > Tiu| for all (0,,&,). This ensures that the global

minimizer of ® belongs to the feasible region. I set

P Z Tmaz/Ttol (547)

where T,,,, denotes the maximum traveltime for all possible IVP solutions. Notice that
this formulation is not valid if T}, is zero. However, in real-world situations we rarely

collect exact data, and a tolerance distance on the target position is allowed.
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In formula (5.46) the “holes” are still present, but the surface height decreases in
the proximity of the feasible regions. The advantage of this formulation lies in the fact
that if the current solution is not in the feasible region all effort is put into guiding the
solution towards this region (the “holes”). On the other hand, when the current solution
satisfies the constraint, all computational effort is put into minimizing traveltime 7.,
and traveltime T, is no longer taken into account. Notice that iteration is not stopped
as soon as T., < Ty,;. Rather, iteration continues within the feasible region so as to
obtain the global minimum in case multipathing exists. SART is stopped only after a
maximum number of iterations or when the cost function is not improved after a number
of consecutive steps. Formulation (5.46) introduces a discontinuity at d = d;,; at most of

size

A® = Thaw — Tope, (5.48)

where T, is the global minimum and d;y is the tolerance distance defined in equation
(5.43). This discontinuity does not represent a major obstacle, in general, for a stochastic
optimization algorithm. But if d;y (or Ty,) is very small, the “diameter” of the feasible
region becomes very small, too (the feasible region reduces to a point and & ~ T, in
case Ty = 0. This is equivalent to minimizing distance d). The optimization of such a
cost function may become very difficult, even for VFSA.

Alternatively the cost function could be defined in terms of a conventional penalty

factor:

8,(0,,6,) = Toe + pTen. (5.49)

where p,, pp > 1, is a constant that weights the trade-off between traveltime T, and

closeness to the feasible region. Now both terms of the sum are minimized simultaneously.
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In the first stages of SART, when T¢, > T}y, it is likely that some local minima of T,
may delay convergence. But soon, if p, is selected properly, trial solutions start being
feasible points. To ensure that the global minimizer of ®, is a feasible point, p, must be
selected as in the previous formulation, equation (5.47). These values for p and p, ensure
that the global minima of both cost functions (5.46) and (5.49) correspond to realistic

raypaths, since

Tmaa:
@[Ter > Ttol] = pTer = —Ter > Tma:m (550)
Ttol
and
Tmam
@p[Ter > Ttol] = Tse + ppTer = Tse + T—Ter 2 Tse + Tmaa: 2 Tma:v; (551)
tol

where Tynq, 18 the maximum traveltime 7, may take for all possible take-off angles. Note
that the larger the value of p,, the harder the optimization problem, since for p, > 1

cost function (5.49) is relatively insensitive to a change in T.:

0%,/0T, 1

—_— = — 1. .52
0%,/0T, Pp < (5:52)

As a result, all feasible points are equally likely to be obtained, because

®,(05,&5) ~ pplr (5.53)

This is equivalent to lowering temperature too fast during the annealing process (quench-

ing). A premature crystallization is obtained and the solution depends on the initial
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model. On the other hand, if p, is too small, the chances of obtaining an unrealistic so-
lution get higher, as discussed in the first paragraphs of this section. There is a trade-off,
then, between global convergence and feasible solution.

As an alternative penalty formulation, one can think of a single SA run where p, =
Tmaz/ Tiot, for annealing temperature 7' = To. Then, as temperature decreases, p, does
so following a predefined decreasing ratio. Apparently, this scheme would make the
job in a single SA run: at high temperatures the solution is guided towards the feasible
region. When temperature is low, the minimization concentrates on finding the minimum
traveltime 7,.. However, the resulting cost function has changed during the process and
global convergence cannot be guaranteed anymore. Nothing prevents the system of being
trapped in a local minimum during the high-p, stages of the process. When T' is low, it
may be too late to escape. Besides, the predefined ratio for decreasing p, must be tuned
very carefully for each particular problem. This is against the philosophy of SART of
being a simple general algorithm for solving the two-point ray-tracing problem.

After testing SART under several numerical experiments I have found that p, =1
is enough to guarantee global convergence to a feasible point in most cases*. This is
an advantage, since it turns out that although cost function ®, with p, > 1 tends
to guarantee global convergence to a realistic raypath, the optimization of such a cost
function takes more iterations, in general, than the p, = 1 case, especially when T}y is
very small. The same can be said for minimizing cost function ®, where p should not be,
in general, smaller than T}, /7. This issue is demonstrated below.

Take Figure 5.28 as an example. Cost functions ® and ®,, which correspond to the

2-D fault model, were computed using

Trmae = max{Ts(0s)} ~ 35.0 ms, Tior = 1.0 ms, p = pp = 35.0.

*Note that actually equation (5.49) together with p, = 1 is the formulation I have used in Chapter
4 in all the examples.
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Figure 5.28: Model 1: alternative cost functions for the fault model. (a) ®, and (b) &,
as a function of take-off angle 6,, with p = p, = 35.0.

These curves are to be compared to the cost functions plotted in Figure 5.9, i.e. d and
T =Ts + Ter. As aresult of the selected values, the absolute minimum of both ® an @,
correspond to a ray satisfying the ray equations from source to receiver. The absolute
minimum of ®, belongs to the feasible region, in general d = 0. The solution coincides

with that in Figure 5.9b:

6, = 125.90°, ¢, = 34.714 ms.

Cost function ® has also a unique global minimum, but the values are slightly different:
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® - equation (5.46) ®, - equation (5.49)

Ttol k Ok Ter orT,, Pp k Ok Ter oT,,

239.5 | 129.0 | 0.286 | 0.113
440.4 | 415.1 | 0.119 | 0.047
706.4 | 831.4 | 0.080 | 0.029

1.00 | 339.6 | 360.6 | 0.630 | 0.259
0.75 | 461.1 | 575.0 | 0.464 | 0.190
0.50 | 673.5 | 782.4|0.322 | 0.124
0.10 | 1208.2 | 1034.9 | 0.067 | 0.023 887.9 | 1125.2 | 0.048 | 0.016
0.03 | 1663.5 | 1421.7 | 0.017 | 0.006 | 10 | 1333.9 | 1304.0 | 0.025 | 0.008
0.01 | 2252.2 | 1819.2 | 0.007 | 0.002 | 35 | 2345.4 | 1944.6 | 0.007 | 0.002

O ot W N

Table 5.12: Mean and standard deviation of the number of iterations, k, required to
obtain the global minimum within 1% accuracy for various cost functions, and mean and
standard deviation of traveltime 7.,.

6, = 124.61°, ¢ = 34.402 ms.

Now the search for the minimum within the feasible region is not biased towards d = 0.
Consequently the global minimum raypaths does not necessarily arrive exactly to the
receiver, but within a tolerance distance dy as defined in equation (5.43). In the above
example, it is not surprising that the global minimum of cost function ® corresponds to
a distance d of about 3 m, since d;,;; = 3 m for the given receiver location and tolerance
traveltime (v = 3 km/s in the near receiver region).

In order to demonstrate which is the best option, in terms of number of iterations to
find the global minimum, I have run SART using several cost functions, for the 3-D fault
model example taking into account both take-off angles. It is assumed that the global
minima of all cost functions correspond to a feasible point, and 7},,, = 35.0 ms. Table
5.12 summarizes the mean and standard deviation of the number of iterations required to
obtain the global minimum within a 1% accuracy, after 200 realizations in each case. Note
that the linearizing stage to refine the solution was not applied in this case. In the case of

cost function @, T;, was varied from 0.01 ms to 1.00 ms, corresponding to p in the range
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35 to 3500. As T}, decreases, the mean number of iterations increases exponentially, as
illustrated in Figure 5.29a (solid line). On the contrary, T., decreases linearly with T};.
This implies that for obtaining a very accurate solution (7, small), a large number of
iterations should be done. Conversely, if T}, is set too large, the emerging point may
be too far away from the receiver point, no matter how many iterations are performed.
Cost function ®, behaves differently (see Figure 5.29b). The values were obtained for
Tiot = 1.0 ms. Despite the fact that T;,; has been fixed to 1.0 ms, the minimization of
®, leads to very accurate solutions in fewer iterations, especially for p, close to 1. The
intersection point between the curves in Figure 5.29 is the best option for maximum
accuracy and greatest efficiency. It is worth mentioning that the refinement stage that
was not applied for constructing Table 5.12 and Figure 5.29, would have reduced 7.,
virtually to zero in both examples. However, in the case of cost function ®, there may be
ambiguities when dealing with very similar solutions unless T}y 1s set very small. If T},
is too large, two or more solutions may lie within a single “hole”. Cost function ®, does
not present this difficulty, but may require a large p, to guarantee global convergence to
a feasible point in some complex media.

In SART, p, = 1 is used by default. In particular models, as that shown in Figure
5.27, pp can be increased in successive SA runs until an upper bound of p, = Tnaz/Ttol-
Whenever SART converges to an unrealistic raypath, p, may be increased by a given
factor (say 2.0) until the global minimum corresponds to a realistic path. This process
should only be repeated a few times (two or three) because the failure to converge to a

realistic path may indicate the presence of a shadow zone rather than p, being too small.
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Figure 5.29: Mean number of iterations and traveltime 7, for various cost functions.
Data is shown in Table 5.12. (a) Cost function ®. (b) Cost function ®,. In both cases,
Tnae = 35.0 ms.

5.8 Conclusions

In this chapter I have developed a 3-D extension of the ray-tracing algorithm presented in
Chapter 4. SART 1is a very versatile computational algorithm for solving the boundary-
value ray-tracing problem in a general 2-D/3-D model. SART aims to find the raypath
connecting any source-receiver pair so that the associated traveltime is a global minimum.
The solution is found after solving iteratively a highly nonlinear optimization problem by
means of VFSA. The results are independent of the initial guess, since VFSA is a global
stochastic optimization algorithm. Contrarily to SART in 2-D, which is based on a cell
ray-tracing scheme, SART extension to 3-D solves numerically the equations derived from
the high-frequency ray approximation theory. This new formulation provides greater

accuracy in the calculations and greater flexibility for dealing with complex models.
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For this purpose, I have also developed a versatile model parameterization system that
allows to represent a wide variety of geologic 3-D (or 2-D) structures. Any number of
regions delimited by arbitrary interfaces can be defined. The velocity (or slowness) within
each region is specified separately, which allows to model any type of waves, including
converted waves.

As in the 2-D case, SART extension to 3-D exhibits some improvements over existing
ray-tracing techniques like bending and shooting. The problem of local minimum paths is
eliminated provided a sufficient number of iterations are performed. Despite the fact that
SART solves an IVP at each iteration, the selection of the appropriate take-off angles
does not represent a serious difficulty even for ill-behaved receiver-distance functions.
This issue is particularly important for tracing complex raypaths where more that two
unknown parameters are to be found, for example when tracing headwaves.

It is worth to mention that SART goal is to find a single raypath corresponding to
the global minimum traveltime. Multiple arrivals can be obtained only if separate search
ranges for the unknown parameters are specified. The optimum raypath obtained by
SART corresponds to a particular solution of the IVP. Consequently, first-arrival raypaths
traveling across shadow zones and arbitrary headwaves cannot, in general, be found. It
has been pointed out that these waves are not the most energetic events because they fill
space fastest and tend to have maximum geometric spreading, especially in models with
strong lateral velocity variations [GB93]. Hence the use of these arrivals (usually obtained
by finite-difference methods) for geotomographic applications is limited or presents some
difficulties. SART arrivals, on the contrary, correspond to the most energetic events
(direct waves) since they are obtained after solving the IVP.

It i1s emphasized that the physical nature of the resulting ray is known a priori and
a posteriori, a point that is very important in phase identification. Later arrivals, like

reflections and headwaves, can be obtained by specifying a ray signature in the way of
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constraints. This is done by penalizing those rays not following the desired signature.
The methodology can be extended to deal with more complex raypaths (multiples, higher
order headwaves, diffractions, etc), including ray conversions of any type.

The accuracy of the results, unlike in bending, does not depend on the parameteriza-
tion of the raypath but on the selected integration method and timestep. Higher-order
accuracy 1s obtained by means of the 4th-order RK integration, for example, at no sig-
nificant extra computational cost. The source of errors is limited then to the accuracy
used in the calculation of the intersections between raypaths and interfaces, and on the
distance between the ray ending point and the receiver. The errors associated with the
intersection points can be made very small simply by increasing the accuracy of the iter-
ative root-finder. The other source of errors is eliminated by polishing the final raypath
after the last annealing iteration. This is carried out by using a standard linearizing
optimization method (e.g. steepest descent) to reduce the receiver distance virtually to
zero within machine precision.

In terms of computational cost, SART is expensive as compared to conventional
boundary-value ray-tracing systems. This is because several iterations are required to en-
sure global convergence. Contrarily, conventional shooting and bending methods usually
converge (if not diverge) in a much smaller number of iterations. But their convergence
is only local. For global convergence, it has been demonstrated that SART is much
faster than some shooting variants such as grid-search and multistart, when dealing with
complex 2-D/3-D media. One disadvantage of SART is that raypaths connecting source-
receiver pairs are found one at a time. This makes SART unpractical for traveltime
tomography when the number of sources and receivers is large. Nevertheless, when there
are a few source-receivers pairs, when the geology is complex, and direct first arrivals are
required, SART is a valuable tool. In these cases, conventional shooting, bending and

finite-differences methods present serious difficulties that SART overcomes naturally.
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Finally, i1t is worth noting that SART may be readily parallelized. Each source-receiver
pair may be treated separately by individual processors. Since the forward problem is
by far the most time consuming stage in SART, it may be possible to obtain superlinear
speedups by using various processors. This means that the speed per processor increases

when processors are added.



Chapter 6

Traveltime tomography

Some circumstantial evidence is very strong, as when you find a trout in the

malk.
Henry David Thoreau

6.1 Introduction

Traveltime tomography for imaging subsurface velocity variations represents a very im-
portant technique in global seismology and exploration studies. The method is used to
obtain the velocity distribution from measured time values (inverse problem). The basic
idea can be traced back to as early as 1917, when a method to locate ore bodies by
combining traveltimes from a number of sources and receivers in various boreholes was
proposed [Fes17]|. Though this method requires a fairly simple medium to roughly locate
the ore bodies by hand interpretation and elementary geometry, it points forward to the
present use of crosswell tomography. In its simplest form, traveltime tomography utilizes
straight rays connecting sources and receivers. Then the problem reduces to solve a linear
system of algebraic equations. Aside from some issues regarding ill-conditioning and/or
sparseness of the derived model matrix, the traveltime tomography problem using straight
rays can be solved without major difficulties. But in highly refractive media the straight
ray approximation becomes invalid and the resulting inverted model is inaccurate.
Curved ray traveltime tomography, on the other hand, provides a more accurate ap-
proximation to the actual physical phenomenon. This technique was originally developed

by [BPLTT72] for estimating the velocity distribution between two wells. As opposed to
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straight ray traveltime tomography, curved ray traveltime tomography is a highly non-
linear problem. This is due to the fact that the arrival-times are nonlinearly related to
the unknown slowness field. In other words, not only the velocity distribution is un-
known, but also the raypaths. Usually, the problem is solved using linearizing techniques
in an iterative fashion. In general, a good starting model is required and some form
of regularization or model constraints must be introduced in the objective function to
stabilize the solution and to minimize the artifacts generated by the inversion (see for
example [Nol87, BBC89, SDG90, Ald92]). In addition, this procedure is also intended to
introduce a priori information in connection with the subsurface slowness field, such as
flatness, closeness to a prescribed base model, etc.

An alternative is to introduce such constraints in the model itself through a suitable
parameterization, an essential stage in any inverse problem. Rather than using box-like
cells, the nonlinear tomographic inversion technique described in this chapter makes use
of either bicubic B-splines with adaptive node spacing, or 2-D parametric functions for
representing velocity anomalies. The motivation for using bicubic B-splines is two-fold:
(1) smoothing is obtained beforehand without the need to regularize in the standard
fashion, and (2) the number of unknown parameters is reduced substantially making the
problem tractable using a computationally intensive algorithm like simulated annealing
(SA). Although bicubic B-splines are inherently smooth, relatively sharp velocity changes
could be obtained by locating a few nodes at key points [Sha93]. I use VFSA to optimize
the velocity values at the spline nodes and the location of the nodes themselves, so the
grid is dynamically adapted along with the nodes values. This strategy allows one to
model moderately complex structures using only a few nodes (3-5 in each dimension)
[VU95b]. In a previous work [Mic95], an adaptive-grid formalism which uses bicubic B-
splines for traveltime tomography is also used. Here node coordinates are updated using

a local linearizing method rather than a global optimization one.
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In other tomographic applications, such as archaeology, mining, and other near surface
studies, one is interested in locating several or a single velocity anomaly submerged in a
smooth background velocity field. Since it is very difficult to decide a priori whether the
underlying structure corresponds to a smooth or a high contrasting velocity distribution,
the selection of a proper parameterization that does not favors any of the two forms is
desirable. This is the motivation of using parametric 2-D functions as an alternative for
reducing the nonuniqueness of the inverse problem at hand. This limits the number of
unknowns significantly and virtually eliminates the artifacts and instabilities associated
with the tomographic problem. At the same time, it provides sufficient flexibility to
model complex structures with a few parameters.

The parameterization adopted in this chapter can be complemented by incorporating
a linear trend to the velocity field. The coefficients of the trend represent extra parameters
in the traveltime inversion. Velocity constraints can be easily included by imposing
range limits to the various parameters which are involved. Prior information about the
subsurface structure can also be used to guide the spline node locations and the anomaly
size and position within the model boundaries. This a priori information is very useful
to reduce the number of forward modeling computations required for convergence, but
are not essential for the success of the nonlinear optimization scheme.

The two forms of parameterizations just described, introduce strong nonlinearities
into the optimization problem. Besides, the resulting objective function (misfit between
observed and calculated arrival times) is multimodal and rather ill-behaved. Unless the
initial model is close to the global minimum, the solution is likely to be trapped in a local
minimum if a local linearizing method is utilized. This is the reason why I use VFSA, at
the expense of a higher computational cost. SA has already been applied to traveltime
tomography without raytracing [AV90, AV93, PL93]. But the parameterization they

used is based on a standard grid with rectangular cells. Though a spatial smoothing is
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introduced at the perturbation stage to reduce the unrealistic artifacts associated to the
inversion, the limitations of a box-like parameterization are still present.

This chapter is organized as follows. First I describe the traveltime inversion prob-
lem in a general sense. I also describe the two forms of parameterization that will be
used to model the velocity field. Second, I present the traveltime inversion as nonlinear
optimization problem, which is to be solved by means of VFSA. Finally, the method is il-
lustrated with various synthetic examples. These comprise crosswell, and well-to-surface
2-D experiments. The results of the nonlinear scheme are compared to a linearized in-
version based on Vidale’s approach [Ald92]. The two forms of parameterization may also
be used, combined or alone, in conjunction with other geophysical techniques, such as
magnetic, or geoelectric methods, provided the forward problem can be solved at each
iteration of the SA algorithm for the given model representation. It is not the purpose
of the proposed techniques to replace any preexisting inversion procedure for general
seismic exploration studies, but to provide an alternative methodology for dealing with
particular models susceptible of being represented by a few parameters. The method is
especially suited for imaging smooth (regional) models and/or near surface structures

such as archaeological and mining prospects.

6.2 General theory

Under the high-frequency approximation of wave theory, the traveltime of a seismic wave

propagating through a slowness field, s(z, z), is given by the path integral (see for example
[Nol87]):

T(s) = /L(s) s(e, 2)dl, (6.1)
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where L(s) is the raypath connecting source and receiver, which satisfies Fermat’s prin-
ciple. The problem is to derive s(z,z) from a number of measured traveltimes T'(s).
This is a very complicated nonlinear inverse problem, since the unknown slowness field is
implicit in the path of the integral. The basic procedure is then to linearize using perturb-
ation theory. For this purpose consider a reference model, sg, and a small perturbation,

As. Ideally, this yields a small change in traveltime:

AT =T — Ty = / sdl —/ sodl =~ [ Asd, (6.2)
L Ly Ly

where Lo = L(s¢). Note that, after invoking Fermat’s principle, we have approximated
the integral along the path L by the integral along the path Ly. The above expression
is valid to first-order, and allows one to linearly relate a small change in traveltime with
a small change in slowness field. In effect, if the slowness field is represented by a set of
K cells with constant slowness sg, (k =1,---, K), then the raypath within each cell is a

straight line segment. For a set of N source-receiver pairs, in matrix notation

AT = A(s)As, (6.3)

where A(s) is a N x K matrix whose elements are raypaths length segments. Equation
(6.3) maps a projection of the model space into the data space, where in general K > N.

The reference model, sg, is known and

AT = T° — T, (6.4)

where T°¢ = Ty are the calculated traveltimes, and T® are the observed traveltimes. The
objective of the inverse problem is to find the perturbation As such that the calculated

traveltimes obtained using the reference model, approximate the observed traveltimes
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within a given tolerance. In the case of straight-ray tomography and if a sufficiently good
ray coverage is available, equation (6.3) can be solved directly, despite the fact that matrix
A is generally nonsquare and large. Unfortunately, the rays are usually not straight nor
is the coverage of paths optimal. Moreover, the observed traveltimes are contaminated by
random noise. As a result, matrix A(s) is, in addition to large and nonsquare, sparse and
rank deficient, and the inverse problem becomes ill-posed. To overcome this difficulty, the
inversion procedure must introduce a criterion so that elements in the model space can
be ranked with respect to each other (regularization, damping, etc). This is to overcome
the nonuniqueness problem, for with the only constraint of AT being small, there exist
an infinite number of models that would reproduce the data (this is the fundamental
difficulty encountered in any underdetermined inverse problem). In general, the problem
is solved by linearizing the objective function with respect to the model unknowns, and
being extremely careful about which criterion has been selected, based on the information
available, to make the inverse problem well-posed. For a complete description of methods

to solve this linearized inverse problem, the reader is referred to for example [Nol87].

6.3 Model representation
I adopted two contrasting parameterization schemes to represent the velocity field, v(z, z):

1. bicubic B-splines with adaptive node spacing; and

2. parametric 2-D functions.

These are intended to offer an alternative to box-like parameterization and to reduce the
number of parameters to a minimum. Yet, they allow a certain flexibility to accommo-
date complex structures. The first approach favors smooth velocity fields. The spline

coefficients are determined “globally” so that the interpolating function is continuous
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everywhere up to the second derivative. The second approach, which was devised to rep-
resent velocity anomalies (e.g. buried structures), does not favor neither smooth models
nor models with sharp discontinuities, though these characteristics could be forced easily

by setting the appropriate bounding ranges for some of its parameters.

6.3.1 Bicubic B-splines

Cubic and bicubic B-splines parameterization in tomography has been effectively ap-
plied by other authors [Fir87, MM91, Mic95]. In these cases, solutions are found by
linearizing the objective function and solving iteratively. Chunduru et al [CSS94] used
bicubic B-spline parameterization for 2-D resistivity inversion using VFSA. Their results
are encouraging because they effectively inverted areas of complex geology at a low com-
putational cost, even though a nonlinear optimization method was used.

The bicubic spline parameterization method adopted here is based on that given
in [PTVF92]. The two-dimensional rectilinear grid consists of M, x M, nodes. To
accommodate complex structures, the spacing in each dimension is not fixed. Rather,
node coordinates are given by z;,¢ =1,.-+-,M,, and 2z;, 7 = 1,---, M,, with z; < z; and
z; < zj if 1 < j. For simplicity, the first and last nodes of each row (and column) are

located on the model boundaries, i.e.

(6.5)

{2131 = Tminy, LM, = Tmaz

21 = Zminy ZM, = Zmaz-

Figure 6.1 illustrates a typical grid for M, = M, = 4.

To perform a bicubic interpolation, the user must specify the function v(z,z) at
each node, the derivatives with respect to the coordinates, dv/0z and Ov/Jz, and the
corresponding second-order cross derivative, §%v/0zdz. The goal of bicubic spline in-

terpolation, a special case of bicubic interpolation, is to obtain an interpolating formula
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Figure 6.1: Example of a two-dimensional grid used for the bicubic spline parameteriza-
tion. The node spacing in each dimension is not fixed.

that is smooth in the first derivative and continuous in the second derivative. This is
achieved by setting first derivatives equal at either side of each node. As a result, second
derivatives can be readily computed provided additional conditions at the boundaries are
given. Natural splines are obtained if second derivatives are set to zero at the boundaries.
Alternatively, these may be set to values so as to make first derivatives equal to zero at
the boundaries. This is the approach I adopted here. Having set all these conditions, a
unique set of spline coefficients can be calculated and the resulting bicubic interpolating

function can be written

4 4
vs(z,2) = Z Z S (6.6)

p=1g=1

where

{ t=(z—z;)/(®it1 — z4),

w= (= 55 — ),
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and c,, are the spline coeflicients at each node. More details about bicubic spline para-
meterization can be found in [PTVF92, LS86].

Additionally, a linear background can also be included:

’l)b(éB, Z) = vy + ga:(m - wmin) + gz(z - zmin)7 (68)

where vy is the background velocity, and g, and g, are the velocity gradients in each
dimension. The total number of model parameters, K, is therefore equal to M, x M, +
(M, —2)+ (M, —2)+ 3. That is number of nodes + number of node coordinates in each
dimension + number of linear background coefficients. For example, if M, = M, = 4,
then the total number of unknown parameters is K = 23. So the model space can be

expressed as the K-length vector

m = {VS7XS)zs;v0)gmagz}7 (69)

where vy is the vector containing the M, x M, spline nodes values, and x4 and zg are the
vectors containing the grid coordinates in each dimension. The last three scalars are the
velocity background coeflicients. Note that the selection of a linear background velocity
is arbitrary, and other function could be selected. A constant background would reduce
the number of unknowns by two. Yet, this constant may be obviated, too, and the model

be represented by the splines alone.

6.3.2 Parametric 2-D functions

The purpose of this parameterization is to represent velocity anomalies using the min-
imum number of parameters. One possibility is to consider regular geometrical bodies

(e.g. circle, rectangle, etc.), which can be defined by its velocity, center coordinates,
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radius, width, etc. This approach is very limiting and presupposes a good deal of a
priori knowledge about the subsurface structure at hand. As a counterpart, the model
representation that I use in this section encompasses a large variety of possible velocity
anomalies, being regular geometrical bodies a particular case.

I constructed 2-D anomalies based on 1-D functions. Essentially, the anomaly is
represented by two separate parts: (1) a flat region of width 2R and amplitude A; and
(2) the slopes at each side of the flat region. If the center of the anomaly function is

located at z., then I define

A7 |CU - -'Bc| S R
va(2) = (6.10)
f(Jz — z.| — R), otherwise
where
A
f@)=—7e9 P>0 (6.11)
14+ (57)?

This function has its maximum, A, at z = 0, and tends to zero asymptotically as z —
+00. Factor p, a dimensionless constant, is defined in such a way that pR is the distance

from the origin at which the maximum of f(z) decreases by a factor of two. That is,

F(IoRI) = £(0)/2 = A/2. (6.12)

This parameter is a measure of the width of the function f(z). As a result, it controls the
slopes of function v,(z). Figure 6.2 shows a series of 1-D anomalies with unit amplitude
and width, centered at z. = 0. Notice how the slopes of v,(z) vary with different values
of p. For p — 0, f(z) — 0, and the anomaly reduces to a box-card. For p — oo,

f(z) — A, and the “anomaly” is flat for all z. It is important to remark that equation
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Figure 6.2: One-dimensional velocity anomaly function for various slopes. Both ampli-
tude and width are equal to one.
(6.10) is continuous and differentiable everywhere, even at z = z. + R, since f(0) = A,
and f'(0) = 0. Equation (6.10) allows us to model either smooth or high contrasting 1-D
anomalies, using only 4 parameters. Namely z., A, R, and p.

In 2-D, one can make use of equation (6.10) to construct 2-D anomaly functions with
similar features. One possibility is to consider a surface of revolution along the axis
normal to the zz-plane passing through the center point (z., z.):

(6.13)

va(r) =

A, r<R
f(r — R), otherwise

where

r= /(2 — o)+ (y — z)? (6.14)
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is the distance between the point (z, z) and the center of the anomaly, A is the amplitude,
and R is the radius of the flat region. The slopes around this circle are controlled by
p, as given in formula (6.11). Although this scheme is quite simple and flexible, it is
not versatile enough to model complex structures, except those with circular symmetry.
We can better approximate complex structures by considering different scales in each
dimension to define the flat region: R, and R,. Let’s redefine the radius of the flat
region, R, as the distance between the center of the anomaly, (z., 2.), and the following

curve:

p>0. (6.15)

Here I have introduced a new parameters, p, that helps to control the shape of the flat
region limits. Notice that for p = 2, equation (6.15) becomes an ellipse of center (z., 2.)
and semiaxes 2R, and 2R,. Further, if R, = R,, it becomes a circle. In practice, R
is calculated by finding the intersection point, (zg, zr), between the straight segment
connecting (z., z.) and (z, z), with the curve (6.15), where (z, z) is a generic point in the

zz-plane. After some algebraic manipulation,

TR = . + :zz—r#,
(6.16)
ZR = Zc + %,
where
/p
(el )
Since R(z,y) = r(zg, 2r), combining equations (6.14) and (6.16), it yields
7
R=—. 6.18
’ (6.18
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rectangle

Figure 6.3: Two-dimensional velocity anomaly function (flat region only) for various
values of p [equation (6.15)]. In all cases (z., z.) = (0,0), R, = 1.0, and R, = 0.5. Notice

how the anomaly takes on different shapes as p varies.

To define the slopes of the anomaly, it is useful to keep the same shape than used for the
1-D case for values of r greater than R. This result can be obtained by replacing = by r
in equation (6.11). It yields

A

f(r) = TPLR)Z- (6.19)

Finally, the 2-D anomaly function is defined like in equation (6.13), with the exception
that R is no longer a constant, but computed using equation (6.18), and that f(r) is
computed using equation (6.19).

As in the 1-D case, v4(r) is continuous up to the first derivative, except for p < 1. The
flexibility of this model representation and the meaning of all the parameters required to
define the 2-D anomaly, are illustrated in Figure 6.3 for various p. Now the shape of the

anomaly can be changed easily by setting the appropriate parameters for the flat region,
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along with the factor p. For example, values of p smaller than or equal to one can also
be selected. The resulting flat region takes on a diamond-like shape. If p — oo, the flat

region becomes a rectangle of size 2R, x 2R,. In effect, from equation (6.15),

|z — [P 1/p
z=2z2.+ R, (1 — T) , |z —z.| < R,. (6.20)

Taking limit,

lim z =

p—00

2.+ R,, |z—z.| <R,
(6.21)

Ze, |z — z.| = R,.

In addition, the whole anomaly is rotated an angle w around the axis normal to the

zz-plane passing through its center. This is done using the transformation

(6.22)

!

' =z.+ (z —z)cosw — (z — z.)sinw
Z=z.+(z—z.)sinw+ (z — z.) cos w,

where ' and 2’ are the new coordinates in the rotated frame.

In summary, 2-D anomalies are represented using parametric functions defined by 8
parameters, namely A, z., z., R., R., p, p, and w. To reduce the number of parameters,
it is possible to set p = constant (e.g. p = 2), yet having a quite flexible model repres-
entation. In this particular case, the number of parameters to be found at the inversion
stage reduces to 7. Finally, as in the case of bicubic splines, a linear background velocity
can be added, as given in equation (6.8). As a result, the total number of parameters is
K = 11. That is, number of anomaly parameters + number of background coefficients.

Then, the model space is given by

m = {A7w67z67R:L’7R27p7p7w7v07.gfvagz}7 (623)



Chapter 6. Traveltime tomography 192

a vector of 11 elements.

6.4 Forward modeling

I adopted a finite-difference (FD) method [Vid88, Ald92, AO93] to compute the travel-
times given a velocity model and a source-receiver geometry. Explicit raypaths are not
required since the SA inversion is based on the computation of the traveltimes only. The
FD method is based on the solution of the eikonal equation using finite-differences on each
square cell of a gridded slowness field. The eikonal equation can be easily derived from
the high-frequency approximation of the wave equation (see for example [Nol87, Ber91]).
The grid is basically the same as that used for ray tracing in Chapter 4 (Figure 4.1), with
the exception that Az = Az = h, and that velocities are assigned to the nodes. Once
a model parameterization has been chosen (bicubic splines or parametric functions), the

velocity field is sampled over the equally spaced grid of N, x N, square cells:

’Uij = ’U(.’Bi, Zj), (624)

where

(6.25)

zi:zmin—l'(j_]-)h, j:]-j"'7Nz7

and v(z,z) = vz, z), equation (6.8), plus either v,(z,z), equation (6.6), or v,(z, 2),
equation (6.13). The “sampling” process given by equation (6.24) and (6.25) is repeated
at each iteration after the corresponding parameters (spline nodes, background velocity
coeflicients, etc.) have been updated by the SA algorithm. So, given a source-receiver
geometry, and the current gridded slowness field, at each iteration the FD method pro-

vides a set of calculated traveltimes
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T¢=T¢(m), n=1,---,N, (6.26)

which are to be compared to the observed traveltimes, 72 (data). Here N is the total

number of source-receiver pairs.

6.5 Nonlinear inversion

The traveltime inversion problem is cast as a nonlinear optimization problem. For this

purpose, I define the cost function

B(m) = X w17~ Tx(m) (6.27)

where w,, are weights. This equations expresses the misfit between the observed and
calculated traveltimes. In general, ¢ = 2, which leads to a standard weighted least-
squares optimization. But other values for ¢ can also be used. The objective is to
minimize equation (6.27) with respect to m, such that

®(m) < By = X%, (6.28)

where ®;, is a tolerance cost associated with the observational errors, and x is the
expected misfit. Note that x has the same units as traveltimes. In general, an estimate
of the right-hand side of equation (6.28) is available, so x is a measure of the goodness-
of-fit of the model to the observed data.

In addition to minimizing ®(m), I specify a set of bounding constraints of the form

Ay <mp<B,, k=1,--- K (6.29)
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This is to avoid undesirable models that may lead to erroneous velocity fields (e.g. negat-
ive velocity values). Also, they may be used to specify some prior geophysical knowledge
about the underlying model, and to “freeze” a certain model parameter by just setting
Ay = By, for some k.

Since the calculated traveltimes 7; are nonlinearly related to the unknown para-
meters (spline nodes, anomaly parameters, etc), the optimization problem represents a
constrained nonlinear inverse problem. Besides, cost function ®(m) is expected to be
multimodal. So, a method based on gradient directions may get trapped in local minima
and the resulting model may be inaccurate. To find the global minimum of &(m), I carry

out the minimization using VFSA.

6.5.1 Selection of VFSA parameters

The initial temperature for the annealing process has been selected as explained in Chap-
ter 2. That is, all parameter temperatures are set equal to 1 for sampling the model space
widely at the first stages. The acceptance temperature is set equal to the mean value
of a number of cost function evaluations (ten by default) at randomly selected points
within the search ranges. The search ranges, equation (6.29), are specified a priori for
the model at hand in next section. The maximum number of iterations, which sets the

main stopping condition, is set in all cases equal to 3000.

6.6 Numerical examples

In this section, I will illustrate the nonlinear procedure using both smooth and non-
smooth 2-D velocity models. The first model represents a smooth velocity field with high
and low velocity zones. I will use bicubic splines here for the inversion. The second model

represents a high contrasting anomaly body immersed in a smooth background velocity.
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Parametric 2-D function will be used here.

Traveltimes are generated using the FD method, and the data are contaminated with
uniform random noise. The noise level is given as a percentage of the maximum traveltime
for all source-receiver pairs. For the purpose of traveltime computations and plotting
only, the velocity field is defined over a rectilinear grid with square cells. But during the
inversion, the velocity field is represented either using bicubic splines or parametric 2-D
functions, as explained in previous sections. Distances are given in meters, traveltimes in
malliseconds, velocities in kilometers per second, and angles in degrees. The coordinates
of the first grid node, i.e. node (1,1), are (Zmin, Zmin) = (0,0), and the size of each cell is
1 x 1. For simplicity, I use a 100 x 100 grid in all examples to compute traveltimes using
the FD algorithm. So the size of the model is a square of 100 m in each dimension. The
acquisition geometry is depicted in Figure 6.4. Both crosswell and well-to-surface (VSP)
data were collected using: (1) 5 sources in each well and 5 receivers on the surface (VSP
data), (2) 5 sources in the left well and 5 receivers in the right well (crosswell data). The
experiment yielded a total of 75 traveltimes that were input, after being contaminated
with random noise, to the inversion algorithm.

Regarding the SA inversion, the iteration stopped when the cost function reached
the expected misfit (6.28), or after a maximum number of iterations (ITMAX=3000).
In the simulations below, data are contaminated with uniform random noise with zero
mean and amplitude +b, where b is a percentage of the maximum observed traveltime.

Assuming all weights are equal to one in equation (6.27), the expected misfit reduces to

X = ﬁ- (6.30)

For least-squares optimization, set ¢ = 2, then we obtain the familiar quantity
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Figure 6.4: Acquisition geometry for the tomographic problem. When the left well is
exploited, data are collected on the surface and the right well receivers. When the right
well is exploited, data are collected on the surface only. This experiment produces a total
of 75 traveltimes.

X = % (6.31)

The nonlinear inversions are compared with the linearizing inversions. This method
basically solves equation (6.3) using the LSQR algorithm [PS82], including suitable model
constraints to stabilize the solution [Ald92]. Normally, a few iterations are needed for
convergence to the expected misfit. The initial model is in all cases the constant velocity

that minimizes the rms traveltime residual.

6.6.1 Smooth model

Figure 6.5a shows the smooth velocity field, SPLIN, used to test the nonlinear traveltime
inversion method using bicubic splines. Basically, it consists of a low velocity blob zone

contrasting the background velocity in about —20%. The background velocity is given by
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v(z,z) = 2.0 —0.0015z + 0.002z. The lowest velocity is about 1.8 km/s, and the highest
is about 2.2 km/s. The blob was generated using a two-dimensional exponential function
with elliptical contours centered at (30,40) and rotated 10 degrees counterclockwise.
Raypaths for this model are shown in Figure 6.5b. The VSP and crosswell traveltimes
were contaminated with 0.4% uniform random noise, as described above. Setting g = 2
in formula (6.30), along with b = 40.26 ms (0.4% of the maximum traveltime), the

expected misfit is

x ~ 0.15 ms. (6.32)

For the inversion, I chose a spline grid with M, = M, = 3, and no background velocity.
This gives a total of 9 + 2 = 11 unknown parameters, including the two coordinates for
the central nodes. The search ranges for all the parameters, as well as the results of the
inversion, are shown in Table 6.1. A total of 20 independent realizations were run using
different seeds, and a maximum number of iterations, ITMAX, equal to 3000. Figure
6.5c shows the mean nonlinearizing inversion, indicating a close match with the actual
model. In practice, this is the model obtained using the mean values shown in Table 6.1.
The small circles show the mean location of the spline nodes. A mean final misfit of 0.19
ms was achieved after 3000 annealing iterations, approximately, as shown in Figure 6.6
(left panel). Similar results are obtained using the linearizing inversion (see Figure 6.5¢).
In this case the expected misfit, 0.15 ms, was achieved after 4 iterations. Both inverted
models are compared with the true model in Figure 6.5a by computing the differential

models shown in Figures 6.5d and 6.5f. These images are obtained using

(6. 3) — 9(i.4)|

Vi) x 100(%), (6.33)

6(i,j) =
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SPLIN ANOMA

my | mean o A, | Bp | mp | true | mean or | Ar | By

vy 202|1001| 14| 26| A 0.50 | 0.490.05| 0.0| 1.0
Vg 1.94 1003 | 14| 26| z. | 40.00 | 40.07 | 0.96 | 10.0 | 90.0
V3 1.86 {0.01 | 14| 26| 2. |40.00 | 39.84 | 0.54 | 10.0 | 90.0
V4 1931001 14| 26| R, | 15.00 | 11.97 | 2.30 | 0.0 | 50.0
Vs 1851001 | 14| 26| R, |25.00 | 19.73 | 4.10 | 0.0 | 50.0
Vg 1911002 | 14| 26| p 4.00 | 6.02251| 1.0]10.0
V7 218 1002| 14| 26| p 0.00| 026021 | 0.0| 1.0
Vg 219 |1002| 14| 26| w |60.00|60.48 | 5.01| 0.0]90.0
Vg 204 |1002| 14| 26| vo | 2.00| 1.99 001 1.0| 3.0
T2 36.3 | 8.71(20.0|500| g, | 0.00| 0.01|0.00|-0.1| 0.1
Zy 33.6 | 6.7]20.0|50.0] g, 0.00 | -0.01 |0.00| -0.1| 0.1

0.67 | 0.10 ; | e - 1.310.38 ; ;
x | 0.19 | 0.02 ; oy | 0.37]0.03 ; ;

I

Table 6.1: Estimated model parameters after 3000 iterations (20 realizations). The search
ranges are specified by (A, Bx). Last two rows show the average differential model and
final misfit mean and standard deviation values, respectively.
where v(¢, j) is the true image, and 0(¢, 5) is the result of the inversion. All errors in the
nonlinear inversion are below 2%, and in the linearizing inversion they are below 3.5%.
The results shown in Table 6.1 reveal that the velocity values at the spline nodes are
well determined, in the sense that they show low variances. On the contrary, the relatively
large variances of the coordinates of the central nodes, indicate that the traveltimes are

not so sensitive to variations in the grid structure, but on the node values.

6.6.2 Anomaly body

The traveltime inversion procedure is also tested using a high contrasting anomaly body,

ANOMA, which is illustrated in Figure 6.7a. A buried structure is submerged in a
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Figure 6.5: Traveltime inversion for the smooth model. (a) True model. (b) Raypath
coverage. (c) SA inversion. (d) SA differential model. (e) Linearizing inversion. (f)
Linearizing differential model.
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Figure 6.6: SART convergence after 3000 iterations (20 realizations).

constant velocity background field. The velocity of the anomaly is 2.5 km/s and the
background velocity is 2.0 km/s. Table 6.1 summarizes the various parameters I used to
build this model using the parametric functions described in previous section, along with
the search ranges utilized by the SA inversion. Figure 6.7b shows the raypath coverage
after exploiting all the sources. Traveltimes were then contaminated with 1% random
noise, with b = +0.61. According to formula (6.30), with ¢ = 2, the expected misfit for

this experiment is

x ~ 0.35 ms. (6.34)

As with the SPLIN model, a total of 20 independent realizations were run using different
seeds, with ITMAX=3000. The expected misfit was achieved well before 3000 iterations
in about 50% of the cases. The convergence curves are illustrated in Figure 6.6 (right

panel). Figure 6.7c shows the mean inversion using the SA approach (i.e. using the
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Figure 6.7: Traveltime inversion for the anomaly model. (a) True model. (b) Raypath
coverage. (c) SA inversion. (d) SA differential model. (e) Linearizing inversion. (f)
Linearizing differential model.
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mean parameters values after the 20 realizations). It can be seen that the true model
was recovered quite accurately. Figure 6.7e shows the inversion using the linearizing
approach. The linearized solution also achieved the expected misfit and converged in
about 5 iterations. Figures 6.7d and 6.7f show the differential models between true and
reconstructed models. All values of the two differential models fall within 5%. However,
the linearized inversion introduced some artifacts not present in the original model. The
basic shape of the anomaly was recovered pretty well, but the sharp boundaries of the
anomaly body could not be recovered, as expected. On the contrary, the SA inversion
recovered the original model very accurately, with most errors below 1%. Though the
linearizing approach imposes smoothness and is not appropriate for the inversion of this

type of models, its results were shown for illustrative purposes.

6.7 Conclusions

I have demonstrated the ability of the described traveltime tomography procedure for
velocity imaging. The results of the inversion using synthetic data are in very good
agreement with the model. The method makes use of either bicubic B-splines defined
over a grid with nonuniform spacing, or parametric 2-D functions to model the velocity
field.

The parameterization is intended to reduce the number of unknowns and to stabilize
the inversion. In the case of bicubic splines, smoothing is achieved beforehand. Besides,
the grid spacing is dynamically adapted to accommodate moderately complex structures,
leaving only a few unknown parameters for the optimization algorithm to work with. As
a counterpart, the approach that utilizes parametric functions does not favor neither
smooth nor high contrasting velocity distributions. This information is extracted from

the data, where this information exists.
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The traveltime inverse problem is cast as a constraint nonlinear optimization problem,
which is solved by means of VFSA in an attempt to find the global minimum regard-
less the initial model. This strategy requires no ray tracing and problems related to:
(1) initial model, and (2) selection of a proper regularization in the standard inversion
procedure, are avoided. The selection of an adequate parameterization is very important,
however, and the success of the tomography inversion resides not only in the ability of
the parameterization to accommodate the subsurface geology, but also in the amount of
data available and ray coverage.

The main drawback of the traveltime inversion problem presented in this chapter
relies perhaps in the fact that it is a time consuming process. Even though fast finite-
differences are used to compute the traveltimes corresponding to each source-receiver pair,
the computational cost is very expensive since a large number of iterations are required
for convergence to a near-optimal solution. As compared to linearizing methods, which
usually require just a few iterations (3-10), the SA approach requires a much large number
(1000-3000). For the size of the models used here, this represented a few minutes in a
Sun Ultra 1 workstation. Nevertheless, the parameterization that is used to represent
the velocity field cannot be inverted satisfactorily using a linearizing method, for there
exists a large number of hidden local minima that inhibit the convergence to a useful
solution.

The methodology is especially suited for those situations where a small number of
parameters is able to represent the subsurface model. In the case of parametric functions,
the method may find application in near surface studies, geoarchaeology, etc., provided
the buried structure can be represented adequately with the parametric functions that
have been described. The bicubic representation is appropriate, on the contrary, for

smooth models only. The extension to 3-D situations may be readily implemented.



Chapter 7

Summary

It is venturesome to think that a coordination of words (philosophies are noth-
ing more than that) can resemble the universe very much. It is also venture-
some to think that of all these illustrious coordinations, one of them — at least
wn an infinitesimal way — does not resemble the universe a bit more than the
others.

Jorge Luis Borges — The Avatars of the Tortoise

This thesis contributes to knowledge in three fundamental areas of seismic processing
and inversion analysis: wavelet estimation, two-point ray tracing, and traveltime tomog-
raphy. These problems are viewed as nonlinear optimization problems, where some misfit
between the observed and calculated data, or some other functional of the model para-
meters, must be minimized (cost function). The leitmotiv of the thesis is centered on
solving these hard optimization problems by means of SA, to avoid local minima, and to
improve the accuracy and reliability of the results.

The problem of wavelet estimation based on the cumulant matching approach was
treated in Chapter 3. Based on the convolutional model, it was assumed that the reflec-
tivity series is non-Gaussian, and that the additive noise is normally distributed. Except
for stationarity, there were no assumptions regarding the wavelet phase. Several im-
provements over previous works were proposed. Special effort was put on those issues
concerning amount of data and reliability of the numerical solution. It was shown that
the cumulant matching leads to an optimization problem where a good initial model is
required for obtaining reliable wavelet estimates, if a linearizing algorithm to solve the

optimization problem is utilized. This justified the use of SA. Since the amount of data

204
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available plays a key role, a convenient multidimensional tapering to reduce the trace
cumulant estimate variance was recommended. As a result, the algorithm could be used
with confidence using relatively short data segments, aiming at a trace-by-trace process.
An heuristic analysis of cumulant sensitivity to wavelet bandwidth was also performed.
It was verified that, like kurtosis and MED-type deconvolution algorithms, the success of
the cumulant matching method relies on the wavelet bandwidth. Finally, a hybrid strat-
egy that combines SA with standard linearizing algorithms was proposed to alleviate the
computational overburden associated with the optimization problem. The behavior of
the method was explored by using several non-Gaussian reflectivity distributions to build
the synthetic traces, and by taking different amounts of data. Real data was also utilized
to test the method. The results demonstrated not only the viability of the cumulant
matching method, but also the reliability of the convolutional model, which is at the
heart of wavelet estimation philosophy.

Chapter 4 introduced a novel method for solving the boundary value ray-tracing
problem in laterally varying 2-D media. The method was called SART, that stands
for simulated annealing ray tracing. The motivation of SART was to overcome some
difficulties arising in standard ray-tracing techniques (e.g. shooting and bending). The
ray-tracing problem was put into a nonlinear optimization framework, where the take-
off angle which produces the ray connecting two fixed points with absolute minimum
traveltime was to be found. The method focused on direct arrivals, since it is based on
a shooting procedure, but other phases could also be incorporated (e.g. diffractions) by
constraining the raypath at intermediate points of its trajectory. It was not possible,
however, to find all the raypaths connecting source and receiver for a given velocity
model, nor to trace arbitrary headwaves and phases traveling through shadow zones,
unless the raypath signature is totally specified a priori. This apparent disadvantage,

which is shared with shooting methods, implied that the phase of the raypath being
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traced was always known, a priori and a posteriori. This issue is very important from the
point of view of phase identification. All the equations for ray tracing in a gridded cell
velocity model were well developed. It was possible to add an arbitrary discontinuity to
represent a geologic horizon. This allowed one to trace not only direct waves, but also
reflections and simple headwaves. The method was illustrated using various numerical
examples. These included multipathing and other nonlinearities which are difficult to
handle using shooting or bending. In all the cases, a fast convergence to the global
minimum was obtained.

SART philosophy was extended for dealing with complex 3-D models in Chapter 5.
Not less important, in this chapter I also developed a complete model representation in
terms of a number of blocks or regions that comprise the velocity field. Each region was
assigned an arbitrary velocity field in the form of a three dimensional function. Block
boundaries were given by arbitrary curve interfaces. SART extension to 3-D is based on
the numerical solution of the ray equations, which were solved by means of standard ODE
numerical solvers. All necessary equations to solve the initial-value problem, including
how to find the intercept points where the ray meets block boundaries, were presented.
It was shown how the boundary-value problem can be viewed as an unconstrained non-
linear optimization problem, where a few unknown parameters were to be obtained. In
general, these were the take-off angles which gave rise to the absolute minimum travel-
time trajectory. In the case of headwaves, for example, the unknowns were represented
by the coordinates the ray enters and leaves a predefined interface. Various alternative
strategies were explored to solve the optimization problem, depending on the type of
ray being traced (i.e. direct waves, reflected waves, etc.). It was found convenient to
refine the solution at the later stages of the SA optimization (hybridization). Here the
optimization problem was redefined in terms of the coordinates of the emerging point,

and efficient linearizing methods were utilized. Several numerical examples were devised
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to test the method under difficult situations, indicating that the algorithm is reason-
ably robust. The models included complex structures that lead to extremely ill-behaved
cost functions. Finally, an extensive analysis and discussion on SART performance and
accuracy was also performed. Several methods for improving SART efficiency were pro-
posed. For example, it was shown that a dynamic integration was much efficient than
using the same numerical solver for all blocks, without loosing accuracy.

Application of SA to the traveltime tomography problem without rays is treated in
Chapter 6. The iterative algorithm is based on two special parameterization schemes.
The solution to the inverse problem was stabilized by virtue of the reduction in the num-
ber of unknown parameters that define the velocity field, rather than imposing model
constraints through regularization. A bicubic spline parameterization with adaptive grid
spacing was proposed for dealing with smooth velocity fields. For models that include
anomaly-like bodies, such as those of interest in archaeology and other near-surface stud-
ies, a versatile parametric scheme based on 2-D functions was presented in full detail. This
novel scheme allowed one to model either smooth or high contrasting velocity structures
with sharp boundaries, including elliptical, circular, or rectangular bodies, immersed in
a smooth velocity background. Numerical examples using both crosswell and VSP data,
demonstrated that the method can be used to successfully image complex structures
without the need to regularize in the standard fashion, provided the velocity field can be

represented using one of the two mentioned parameterization schemes.

7.1 Future research

This work leaves open several areas of research. First, developing the cumulant match-
ing approach in the frequency domain would provide interesting insights in the wavelet

estimation problem using higher-order statistics. Different polyspectra may be combined
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into a single cost function to optimally extract their information (e.g. second-order stat-
istics may be used for magnitude recovery, and fourth-order statistics for phase recovery).
The spectra may be parameterized to reduce the number of unknowns and to increase
SA efficiency and accuracy. A comparison with polycepstra-based methods would bring
more understanding to this field, as well.

Second, a parallelized approach to the boundary ray tracing problem would give a
more quantitative idea of the potential of SART for dealing with several raypaths as it
is usual in tomography applications. Methods based on graph theory have not yet been
implemented for dealing with complex 3-D models. It would be interesting to test its
applicability, from the point of view of efficiency and accuracy, as compared to SART.

Third, better controlled experiments in Chapter 6 would add more understanding
to this area. Devising alternative parameterization schemes for dealing with nonregular
anomaly structures would provide a more flexible approach for imaging buried complex
bodies. Three-dimensional anomalies could also be represented by this technique, as well
as three-dimensional smooth velocity fields based on cubic splines, or other interpolation
methodology.

Finally, it has been assumed that VFSA is one of the most efficient SA methods
available for dealing with nonlinear optimization problems. But other SA variants have
emerged in the last few years and have shown to be very efficient in certain applications.
Genetic algorithms, taboo search, and other rather unlikely methods are always attrac-
tive algorithms for global optimization. Few published reports make a fair comparison
between them. Improving existing SA techniques would certainly help to develop more
efficient algorithms for solving difficult nonlinear optimization problems arising in seis-
mic exploration and other geophysical areas. Questions like “how many iterations are
required to obtain the global minimum?”, “how accurate are the results after a certain

number of iterations?”, “how much faster can a SA algorithm be made without affecting
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the reliability of the results?”, have no clear and definitive answer, for the results depend
tremendously on the nonlinear inverse problem at hand. It is not only the so-called “curse
of dimensionality” that plays a key role in SA optimization, but also the complexity of
the cost function (e.g. number of local minima, roughness). These are questions that

experience will resolve.
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Appendix A

Sufficient conditions for the global convergence of various SA algorithms

In this appendix, I give a heuristic demonstration showing that the given temperature
schedule is a sufficient condition for the convergence to a global minimum (a more rigorous
proof for the convergence of BA can be found in Geman and Geman [GG84]). For this
purpose, it is enough to prove that the products of the probabilities of not generating a

state z for all annealing times successive to kg is zero [SH87, Ing89]:

o0

IT(1-g)=0. (A1)

k=kq

This means that all model states are given the chance of being sampled and checked for
acceptance before the system is too cool to proceed. By taking logarithm of equation

(A.1) and Taylor expanding in g,

Soln(l-gi )= —gr+9i/2—g5/3+ . (A.2)
k:ko kaO

As a result, proving equation (A.1l) is equivalent to prove that

[e9)

Y gr = oo. (A.3)

k=kq

In BA the generating pdf is a Gaussian distribution, and if 7" is chosen to be equation

(2.6), for a sufficiently high Tp, equation (A.3) yields
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(o) o0 o0 1

D D O o e (A4)

k=ko k=ko k=ko

In FA, where a Cauchy distribution is used to generate new model states, T can
be lowered at a faster rate. In effect, replacing equation (2.8) into the corresponding

generating function, for arbitrary 7o, equation (A.3) yields

e T, &1 1 T, &1
E}; T rAZMH kE; k 21 M T wAzMAL k;; k- o (A.5)
’ [1 + (kAa:) -

In VFSA, a still faster cooling rate is allowed due to the nature of the generating
pdf. Replacing equation (2.15) into the corresponding generating pdf, for arbitrary To,

equation (A.3) becomes

oo co M o q
~ — = o0, A6
k;;o 21; 1:[ Cz|yz|k1/M 121;0 k (A.5)
since
2(|yi| + Ti)ln(l + l/Tz) ~ 2|yi|(cik1/M —1In Tgi) ~ 2Ci|yi|k1/M (A7)

as T; becomes small for large k. It should be noted that the convergence proof is not
affected by the value of ¢;, When quenching is desired, equation (2.15) is replaced by

equation (2.19) with 1 < @ < M, and convergence is no longer guaranteed:

(o) (e @)

o M 1
2 9 21; 1:[ 2¢;y; IkQ/M g,; R = (A8)

k=kq



Appendix B

Formulas required for cell ray tracing with piecewise constant velocity

In Chapter 4 T have described a method to solve the IVP through a velocity model that
has been parameterized using rectangular cells with constant velocity. In particular I
described how to trace each ray segment in the case that the first point lies on the left
edge of any given cell. In this appendix I give all the required formulas to trace every
possible ray segment. Tables B.1, B.2, B.3 and B.4 summarize the formulas for each
particular case. The last row indicates the next set of formulas that must be used. Table
B.5 shows the angles ¢, and ¢, that are used to decide which column of formulas must

be used. Also, note the following definitions

Za = Zmin + (7 — 1)Az,
zp = zq + Az,
Ty = Tmin + (1 — 1)Az,

zTp = x4 + Az,

where %, and zpi, are the coordinates of node (1,1).
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LEFT 0<‘9k§90a cpa<9k§gob 906<‘9k<71'
Tyl ok + (2 — 21) tan d Tp ok + (zr — 2,) tan
Zkt1 2 2z + Az tand Z4
Or11 arcsin [:}’—Z sin 19] 7 — arcsin [:}’—(’: sin 19] T — arcsin [z—f sin 19]

tr 1 41— 1 Zp41—2k 1 @41 T
ve sind ve sind ve sind
J Gk 72_r — 9k ™ — 9k
next cell (i,7+ 1) (14+1,7) (i, — 1)
next set TOP LEFT BOTTOM
Table B.1: Shooting from the left edge of cell (¢, 7).
TOP 0 <0 < @a o <O < I Sr <6 <
¢’b < «9k < 27
Thi1 zr + Aztan 9 Tp Tg
Zhi1 2 2k + (zp — @) tand | zp + (2 — z,) tan d
Or11 arcsin [:’—2 sin 19] 3 — arcsin [:’—Z sin 19] %71' + arcsin [:}’—Z sin 19]
t 1 41— 1 zp41—2 1 zgp41—2
k ve sind ve sind ve sind
J 9k 72—r — 9k Gk — gﬂ'
next cell (i, +1) (1+1,7) (i—1,7)
next set TOP LEFT RIGHT

Table B.2: Shooting from the top edge of cell (z, 7).
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RIGHT 71'<9k§90a cpa<9k§gob (,Db<9k<27l'
Thi1 o — (2 — 2,) tan ¥ T4 zr — (zp — z) tan d
Zkt1 Za 2z + Az tand 2
Or11 T 4+ arcsin [:’—Z sin 19] %71' + arcsin [:}’—Z sin 19] 21 — arcsin [:}’—(’: sin 19]

t 1 Ep—Tp41 1 zp41—2 1 &p—Tp41

k ve sind ve sind ve sind

1 0, —m 9k—%7r 2m — 6,
next cell (i,7 — 1) (1—1,7) (i, +1)
next set BOTTOM RIGHT TOP

Table B.3: Shooting from the right edge of cell (7, 7).

BOTTOM 7 <0 < a Yo < Ok < ©p wp < O < %71'
Tht1 Tp zp + Aztan?d Tg
Zhi1 zi — (zp — zg) tan ¢ Zq zi — (z, — z4) tan d
Or11 2 + arcsin [:’—Z sin 19] T — arcsin [z—’; sin 19] %71' — arcsin [:’—Z sin 19]
J O — 3 T — O %71' — b,
next cell (i+1,7) (i,7 — 1) (:1—1,7)
next set LEFT BOTTOM RIGHT

Table B.4: Shooting from the bottom edge of cell (3, 7).
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cell edge ©a @b
LEFT 5 — arctan % T+ arctan ZkA_:a.
TOP arctan =27k 27 — arctan ®i-re
3 Zkp—2Z2a 3 Zp—2
RIGHT sm — arctan 222¢ | S 4 arctan 27
BOTTOM | ® — arctan % 7 + arctan mkA—Zma

Table B.5: Angles ¢, and ¢, are used to determine on which cell edge the next point of
the ray trajectory will lie on.




Appendix C

CPU time saving by using a different numerical integrator in SART

The reduction in computational cost by using a different, less accurate, numerical in-
tegrator in SART can be estimated as follows. Let 77} and 7T, be the total computa-
tional time using Method 1 and Method 2 for integrating the differential equations with
a fixed stepsize. Also let r., be the ratio of the number of evaluations per step of the
right-hand side of equation (5.2) required by Method 2 and Method 1 respectively (e.g.
if Method 2 is Euler, and Method 1 is fourth-order Runge-Kutta, then r., = 1/4). So
the computational cost associated with subprocess INT for Method 2 is approximately

equal to r., times INTi, so I write

TT1 ~ INTl . TT1 —|—TTO
{ (@)

TT2 ™ Tev INTl TT1—|—TTO

where T'T, is the computational time spent by all SART subprocesses except INT; (i.e.
TTo =TT, — INT;). Subtracting the above two expressions and dividing by 777, I get

TT,
—— ~ 1 — (1 —7re)INT. 2
T = 1= (1= 7o) INT, (C2)

In particular, for re, = 1/4, and INT; = 64.7% (first column, fifth row in Table 5.7), it

yields

TT, _ _TT .,
TTl - TTE'u,le'r - 051
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Thus SART is expected to double the number of rays per second if one uses Euler instead
of fourth-order Runge-Kutta for Model 1, with A¢ = 1.0 ms. The ratios as computed
using formula (C.2) when Method 2 is either Euler or second-order Runge-Kutta are
shown in the last two rows of Table 5.7. Of course, in the case of the salt-dome model
where some velocities are not constant, the results using Euler method are not as accurate
as using fourth-order Runge-Kutta, especially for At = 3.0 ms. There is a trade-off, then,

between accuracy and efficiency.



