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Thin-bed prestack spectral inversion

J. Germéan Rubino' and Danilo Velis'

ABSTRACT

Prestack seismic data has been used in anew method to ful-
ly determine thin-bed properties, including the estimation of
its thickness, P- and S-wave velocities, and density. The ap-
proach requires neither phase information nor normal-mo-
veout (NMO) corrections, and assumes that the prestack seis-
mic response of the thin layer can be isolated using an offset-
dependent time window. We obtained the amplitude-versus-
angle (AVA) response of the thin bed considering converted
P-waves, S-waves, and all the associated multiples. We car-
ried out the estimation of the thin-bed parameters in the fre-
quency (amplitude spectrum) domain using simulated an-
nealing. In contrast to using zero-offset data, the use of AVA
data contributes to increase the robustness of this inverse
problem under noisy conditions, as well as to significantly re-
duce its inherent nonuniqueness. To further reduce the nonu-
niqueness, and as a means to incorporate a priori geologic or
geophysical information (e.g., well-log data), we imposed
appropriate bounding constraints to the parameters of the me-
dia lying above and below the thin bed, which need not be
known accurately. We tested the method by inverting noisy
synthetic gathers corresponding to simple wedge models. In
addition, we stochastically estimated the uncertainty of the
solutions by inverting different data sets that share the same
model parameters but are contaminated with different noise
realizations. The results suggest that thin beds can be charac-
terized fully with a moderate to high degree of confidence be-
low tuning, even when using an approximate wavelet
spectrum.

INTRODUCTION

Extracting stratigraphic information from seismic data below the
tuning thickness always has been a key objective for many geophys-
icists, used, for example, to characterize hydrocarbon-interbedded

reservoirs. The conventional method to estimate bed thickness con-
sists of measuring the time difference between the peak and trough
of the seismic response. As is well known, this procedure is not ap-
propriate to estimate the thickness for layers below tuning, unless it
is combined with a thoughtful analysis of seismic amplitudes, which
requires wavelet-phase knowledge (Widess, 1973; Kallweit and
Wood, 1982). Moreover, the Widess model assumes that the reflec-
tion coefficients are equal and opposite.

Thus, for subtuning thicknesses, some extra information con-
tained in the data should be taken into account. Spectral decomposi-
tion (Partyka et al., 1999; Marfurt and Kirlin, 2001), for example,
uses the discrete Fourier transform of the data to map time thickness-
es. Essentially, the notch spacing in the amplitude spectrum is asso-
ciated with the reflection coefficients’ time differences, and there-
fore to bed time thickness. The primary limitation of spectral decom-
position is data bandwidth because these notches might not be iden-
tifiable for subtuning thicknesses.

Recently, Puryear and Castagna (2006, 2008) proposed a spectral
inversion algorithm that can provide robust time-thickness estimates
below tuning by inverting the amplitude spectrum of the thin-bed ze-
ro-offset seismic response. The reflection coefficients are estimated
also, leading to a sparse-reflectivity inversion. Although robust and
accurate, the method relies on the reflectivity model and is aimed to
obtain the time thickness and the reflection coefficients alone. To ful-
ly determine the thin-bed parameters (including thickness in length
units, compressional and shear-wave velocities, and density), which
subsequently could be used to derive useful lithology and fluid infor-
mation, it is clear that the information contained in the reflectivity-
based zero-offset seismic trace is insufficient. A more complete
modeling of the seismic response of the thin bed is required.

These facts encouraged us to propose a different methodology to
characterize thin beds using the amplitude spectra of prestack data,
because amplitude-versus-angle (AVA) anomalies are expected to
exist (Liu and Schmitt, 2003). This extra information increases the
robustness of the inversion and reduces its inherent nonuniqueness,
permitting us to fully determine the thin-bed thickness and physical
parameters. Although a priori information about the media lying
above and below the thin bed is needed, it need not be known accu-
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rately. Furthermore, the proposed algorithm improves the estimation
of their properties.

It is worth mentioning that our methodology does not require any
phase information, which is an advantage in many cases. Only an es-
timate of the amplitude spectrum of the wavelet is needed to simu-
late the AVA spectral response of the thin bed. In addition, because
the proposed technique relies entirely on the amplitude spectra of the
data, normal-moveout (NMO) corrections are not required; then,
stretching effects have no implications. In this regard, it is assumed
that the thin-bed seismic response in the amplitude-versus-offset
(AVO)/AVA domain can be isolated by using an appropriate angle-
dependent time window. Some additional practical issues must be
taken into account. In this sense, the method assumes plane-wave
propagation, planar interfaces, known estimates of the properties of
the media lying above and below the thin bed, and decomposition of
the data into angle-time domain.

The numerical experiments suggest that all the thin-bed parame-
ters can be determined with a reasonable uncertainty, even when
only an approximate wavelet amplitude spectrum is available. The
examples include two models that simulate high- and low-velocity
gas-sand layers embedded between two encasing half-spaces.
Wedge models are used to test the algorithm for thicknesses below
and above tuning.

METHODOLOGY
AVA response of a thin bed

The seismic response of real thin-bed reservoirs is very complex,
and it usually is affected by undesired signals associated with the
over- and underburdens. Despite this, we assume a simplified model
in which these effects are neglected, which allows us to obtain useful
information for characterizing these environments. In this sense, we
consider a plane compressional wave striking at an elastic, horizon-
tal, thin layer embedded between two homogeneous half-spaces. To
obtain the AVA response of the thin bed, we follow the methodology
presented by Liu and Schmitt (2003), but we include the propagation
of shear waves generated at the layer interfaces.

Let a plane, harmonic, compressional wave of frequency w
= 277f and unit amplitude propagate in the (x,z) plane, arriving at

Incident
wavefront
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Bottom half-space
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Figure 1. Diagram of the thin-bed model, and reflection and trans-
mission rays. For simplicity, we do not show the shear waves gener-
ated at the interfaces, which indeed are included in the AVA response
calculations.

the thin bed with an incidence angle € (see Figure 1). The particle
displacements in the top half-space are caused by the contributions
of the incident wave, and the reflected compressional and shear per-
turbations; whereas, in the bottom half-space, they are given by the
superposition of the particle displacements generated by the trans-
mitted compressional and shear waves. On the other hand, the dis-
placements within the thin bed are obtained by considering four par-
tial wavefields associated with a compressional and a shear wave
traveling upward, and a compressional and a shear wave traveling
downward within the thin bed.

To represent the different contributions, we use scalar and vector
potentials associated with compressional and shear perturbations,
respectively. The scalar potentials in the top half-space, thin layer,
and bottom half-space can be written, respectively, as

¢l _ ei(wtfk‘zlek’;]z) + Rp(w)ei(wz‘fkflx+k€]z)’
b, = Ap(w)ei(wtfkfzxfkfzz) + Bp(w)ei(wtfkf2x+kfzz)’
¢3 T (w)et(wtfkpx kpZ) (1)

where R,(w) and T,( w) are the generalized compressional reflection
and transmission coefficients, respectively, and A,(w) and B,(w) are
the amplitudes of the contributions to the scalar potential within the
thin bed. In addition, k? = (kf, + k”) are the wave vectors associated
with the compressional perturbatlons in the top half-space (i = 1),
thin bed (i = 2), and bottom half-space (i = 3). Their moduli are
given by k! = w/V,, where V,, represents the compressional veloci-
ties.

The vector potentials, associated with the shear perturbations in
the different media, are given by

lzbl = Rs(w)ei(wt

W, = [As(w)ei(wz—k;2x—kzzz) + Bs(w)ei(w_ ki_zx+ k‘;Zz)]gvz’

x4+l e
kX]x kZIZ)C‘Q,

U3 = T(w)e 498, (2)

Here, R,(w) and T,( w) are the generalized shear reflection and trans-
mission coefficients, respectively, and ¢, denotes the unit vector
along the y Cartesian axis. In addition, A(w) and B,( w) are the am-
plitudes of the contributions to the vector potential within the thin
layer. Expressions k! = (kv ,*+ k‘) are the wave vectors associated
with the shear perturbatlons in the different media, and their moduli
are givenby kj = w/V,, where V; represents the shear velocities.

The particle dlsplacements in the top half-space, thin bed, and bot-
tom half-space, are given, respectively, by

1=V¢1+VX¢1,
:V¢2+VX'7//29

Substituting equations 1 and 2 into equation 3, and requiring the con-
tinuity of the horizontal component of the particle displacement
through the bottom and top layer interfaces, it is easy to conclude
that

K=k =k =k ==, @
1 2 3 1 2 3

which is Snell’s law. Next, taking into account that k;’l = k¥ sin 0,
and using equation 4, we find that
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K=k = (K sin 0)2]2, a=ps i=123. (5)

Then, using the elastic properties of each medium, we relate the dis-
placement vectors with the stress tensors by means of Hooke’s law.
As usual, we require the continuity of the displacements and normal
and shear stresses through the top and bottom layer interfaces, which
leads to an 8 X 8 linear system of equations, where the unknowns are
the eight potential amplitudes.

The product of the source amplitude spectrum and the modulus of
the potential amplitude R,( w) for different incidence angles, consti-
tutes the amplitude spectra of the prestack data. This methodology
allows us to calculate the seismic response of a plane compressional
wave arriving at a thin layer in the angle-frequency (amplitude spec-
trum) domain. The modeling takes into account the effects of con-
verted P-waves, S-waves, and all the associated multiples generated
at the layer interfaces. Should the source phase be available, the seis-
mic response in the angle-time domain could be obtained.

Prestack spectral inversion

Let A(f,6) and A(f,6) be the amplitude spectra of the observed
and calculated prestack data, respectively. In practice, the thin-bed
seismic response should be identified first, and then isolated by using
an angle-dependent time window. This window is centered at the
thin-bed response and is of constant length. Next, A(f,6) is obtained
by applying the Fourier transform to the windowed data after apply-
ing a taper (e.g., a Hamming window) to minimize truncation errors.
Notice here that wavelet phase and NMO corrections are not re-
quired, which represents an advantage of the proposed method.

We define cost function J, as a 10-dimensional function that de-
pends on the elastic properties and densities of the top and bottom
half-spaces, and on the thickness, density, and elastic properties of
the thin bed. Itis given by

| N M
= N_Mz 2 Wi[A(fj’oi) - A(fj’ei)]za (6)

i=1j=1

where N is the number of angles of the prestack data, M is the num-
ber of frequencies utilized, and w; are weights. For simplicity, in the
examples below, we selected all weights equal to one.

Clearly, the problem of finding the set of model parameters that
minimize J represents a highly nonlinear inverse problem. To avoid
local minima and poor convergence, we minimize J using a hybrid
optimization scheme that involves both simulated annealing (SA)
and a linearizing approach. In practice, we minimize J using very

Table 1. High- and low-velocity gas-sand models.

Model Layer V, (km/s) V, (km/s) p (gr/cm?)

High top 3.094 1515 2.40
middle 4.050 2.526 2.21
bottom 3.146 1.554 2.41

Low top 3.048 1.244 2.40
middle 2.438 1.626 2.14
bottom 3.048 1.244 2.46

fast simulated annealing (Ingber, 1989) for a fixed number of itera-
tions until convergence to the global minimum region. Then we
switch to the linearizing stage (we use the Powell’s quadratically
convergent method as described in Press et al., 1992) to refine the so-
lution and accelerate convergence to the global minimum. We incor-
porate bounding constraints in all the model parameters to guarantee
physically reasonable models. The possibility of fixing a given
search range for each model parameter individually is very conve-
nient to force the solution to honor any available a priori geologic or
geophysical information (e.g., well-log data). In a practical context,
this contributes to reduce the nonuniqueness of the inverse problem.

SIMULATION RESULTS AND DISCUSSION

To analyze the behavior of the proposed prestack spectral inver-
sion method in various geologic thin-bed scenarios, we invert the
simulated AVA spectral data corresponding to two different models:
ahigh- and alow-velocity layer embedded between two half-spaces.
The parameters that describe these two models are defined in Table
1. The low-velocity model corresponds to the classical Ostrander
gas-sand model (Ostrander, 1984); whereas, the high-velocity mod-
el also represents a gas-sand model (Nowak et al., 2008), with encas-
ing shales on top and bottom.

In both cases, we use wedge models with thicknesses varying
from 0.1 through 1.5 times the tuning thickness. The tuning time
thickness for a Ricker wavelet is 6/ (27f,), where f, is the domi-
nant frequency (Chung and Lawton, 1995). For generating the AVA
data, we select a 30-Hz Ricker wavelet, which leads to a tuning
thickness of about 13 ms. In terms of length units, this value corre-
sponds to layers of 16 and 26 m for the low- and high-velocity mod-
els, respectively. The simulated data (21 traces per gather) take into
account incidence angles ranging from 0° through 40° in all cases.
We then contaminate the resulting gathers with additive Gaussian
noise with a given signal-to-noise ratio (S/N). We define the S/N as
the ratio between the noise-free gather energy and the noise energy.
For the minimization of J, we select a frequency band where the S/N
is expected to be higher (10—60 Hz).

To assess the uncertainty associated with the model parameter es-
timations, we repeat the inversion for 100 different data sets that
share the same model parameters, but are contaminated with differ-
ent noise realizations. Then we calculate the uncertainty by averag-
ing all the individual solutions and computing the standard devia-
tions.

The problem of nonuniqueness

Figure 2 shows the simulated gather and associated amplitude
spectra corresponding to the high-velocity model, for a very thin lay-
er with 7 =8 m and S/N = 100. There is a noticeable decrease in
the amplitude of the seismic response and a change in the character
of the signal, as interbed multiples and wave mode conversions de-
velop for different incidence angles. A time-domain picking of the
peak and trough of the zero-offset trace yields a time difference of
about 12 ms, a value that corresponds to a thickness of approximate-
ly 24 m, which is three times the actual value. Naturally, this is a
very inaccurate estimation, and results from the fact that the infor-
mation contained in the peak-trough time difference is useless below
tuning.
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Another approach to characterize thin beds is the spectral inver-
sion method proposed by Puryear and Castagna (2008). Itis based on
zero-offset data and targets reflection coefficients and time thick-
nesses. It would be interesting to see whether the amplitude spectra
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Figure 2. (a) Simulated gather, and (b) amplitude spectra for the
high-velocity model (2 = 8 m,S/N = 100).
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Figure 3. Log(/) as a function of thickness & and V, in the high-ve-
locity model: (a) using only the amplitude spectrum of the zero-off-
set trace; (b) using the amplitude spectra of the whole gather. The
white cross indicates the true solution (4,V,) = (8.0,4.05). Note that
all remaining parameters were fixed to their true values.
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of zero-offset data provide the additional information needed to de-
termine the thickness (in length units) and reasonable estimates of
the velocities and densities. Figure 3a shows the logarithm of the
cost function J using only the amplitude spectrum of the zero-offset
trace for the high-velocity model (8-m-thick bed), fixing all parame-
ters to their actual values except 2 and V). Clearly, there are many
model parameters that yield an amplitude spectrum that fits the data.
The higher-velocity family of solutions essentially produces seismic
responses very similar to the true data. The lower-velocity family of
solutions yields time-reversed seismic responses, with an amplitude
spectrum similar to that of the true data. In sum, there is an inherent
ambiguity which shows that the information contained in the spectra
of zero-offset data is not sufficient to estimate all the mentioned pa-
rameters simultaneously.

On the other hand, when using the amplitude spectra of the
prestack data (N = 21, € in the range of 0-40°), cost function J clear-
ly shows an isolated minimum around the actual model parameters
(Figure 3b). Thus, the use of prestack information is essential to sig-
nificantly reduce the nonuniqueness of the inverse problem, further
suggesting that these data could be used to effectively determine all
the thin-bed properties.

High-velocity gas-sand model

Figure 4 shows the results of the full spectral inversion of the
prestack data for the high-velocity wedge model. We assume that the
elastic parameters and densities of the top and bottom half-spaces
are known within a given tolerance error. That is, the SA search is
performed over a wide search range for the thin-bed parameters (the
search ranges coincide with the y-axes’ limits in the plots), but a nar-
rower search range is allowed for the parameters of the two half-
spaces. Figure 4a shows the results when the half-space parameters
are allowed to be adjusted in the range given by the true values
+ 1%. In Figure 4b and c, these ranges are increased to = 10%. In
addition, the data are contaminated with noise, using S/N = 100 in
Figure 4aand b, and S/N = 10in Figure 4c.

In the three cases, the results are very accurate, with mean relative
errors below 10% in most cases. The uncertainty of the thickness es-
timates is very small, even for thicknesses far below tuning and
when top and bottom parameters are known only within 10% toler-
ance. As expected, for thicknesses above tuning, the accuracy of the
estimates increases significantly, except for density in Figure 4b and
c. Even in the case of higher S/N, the results show that thin beds of a
few meters can be characterized very well.

Besides the characterization of the thin bed, this process also in-
volves the adjustment of the top and bottom half-space parameters
through a restricted search around some a priori estimates. Such
search ranges must not be too wide, because they could lead to ambi-
guities that are difficult to resolve even using the full gather. Howev-
er, for the selected search ranges ( + 10%), results demonstrate that
the estimation of these parameters (not shown) is very accurate. In
practice, the uncertainties of these estimates are much smaller than
the * 10% tolerance specified for their respective search ranges,
giving additional information to improve the knowledge of the geo-
logic setting.

For illustrative purposes, Figure 5 shows the estimated gather for
h =8 m as compared to the actual data. The estimated gather was
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Figure 4. Prestack spectral inversion in the high-velocity wedge model. Top and bottom half-space parameters are known within a 1% tolerance

error in column (a), and 10% in columns (b) and (c). Data with S/N =

1001in (a) and (b), and S/N = 10 in (c). The plots show the mean solution

(squares) plus or minus one standard deviation (shaded area). Solid black lines show actual values. Tuning-thickness fraction of 1.0 corresponds

to 26 m.
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Figure 5. (a) Actual gather for the high-velocity model (7 = 8 m,
S/N = 10). (b) Calculated gather after the inversion using the mean
model parameters. (c) Residual.
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generated using the mean parameters shown in Figure 4c, for a tun-
ing thickness fraction of about 0.3. The residual in Figure 5¢ shows
that the fit is very good, considering we are determining the parame-
ters of a bed as thin as 8 m using noisy data. In addition, Figure 6 il-
lustrates the observed and estimated traces and amplitude spectra for
6 = 0 and 40°, showing an excellent agreement between observed
and calculated data.

Low-velocity gas-sand model

The results of the prestack spectral inversion for a wedge model,
with thicknesses varying from 0.1 through 1.5 of the tuning thick-
ness (i.e., 1.6—24 m), and for the case of the low-velocity model, are
shown in Figure 7. We can observe that uncertainties of the various
parameter estimates are higher than in the high-velocity model, al-
though the accuracy is very good, with mean relative errors below
10-15% in most cases. In this case also, the model parameter with
higher uncertainty is density, meaning that it is not very well re-
solved with the information contained in the gather. Nonetheless, it
is determined with accuracies below 10% in most cases. Although in
general, the uncertainties of all the parameters increase in the higher-
noise case, the results show that thin beds of a few meters can be
characterized very well.
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Figure 6. (a) Seismic responses, and (b) amplitude spectra for an
8-m-thick bed, for # = 0° (solid black) and 6 = 40° (solid gray) in
the high-velocity model. Top and bottom half-space parameters are
known within a 10% tolerance error, and S/N = 10. Dashed lines
show the calculated data using the mean parameter estimates after
the full prestack spectral inversion.

The general increase in the uncertainty of the parameters is associ-
ated with a decrease in the amount of information contained in the
data. In effect, Figure 8a shows the data corresponding to a thin bed
of 4.8 m: the AVA effect is much smaller than in the high-velocity
case (Figure 5a).

For the sake of completeness, Figure 8b and ¢ shows the estimated
gather using the mean model parameters and the residual, respec-
tively. Finally, Figure 9 depicts the observed and estimated traces
and amplitude spectra for § = 0° and 40°, showing an excellent
agreement between observed and calculated data. For this plot, we
selected 4 = 4.8 m, which represents 27% of the tuning thickness.
Note the high noise levels in the data (spectra) used for the inversion.

Sensitivity to wavelet spectrum

In the previous examples, we assumed that the amplitude spec-
trum of the wavelet was known accurately. Here, we show how the
prestack spectral inversion method behaves when only an approxi-
mate wavelet spectrum is available.

For this purpose, we generate an approximate amplitude spectrum
by contaminating the actual wavelet in time domain with filtered
random noise, and calculating the magnitude of its Fourier trans-
form. Figure 10 shows the amplitude spectrum of the actual 30-Hz
Ricker wavelet used in the simulation of the data, along with the am-
plitude spectrum of the noisy wavelet used for the inversion in the
following examples.

Figure 11 shows the results of the inversion in the (a) high- and (b)
low-velocity wedge models, using noisy data (S/N = 10). As ex-
pected, the uncertainty in the estimation of the model parameters in-
creases significantly, especially for the low-velocity model, where
the information content of the gathers is lower. Nevertheless, in most
cases, the estimated parameters are within 10% of the true values,
except for the smallest thicknesses. These figures are to be compared
to Figures 4c and 7c, respectively. Although there is an overall de-
crease in the quality of the results, the spectral inversion procedure
still can provide useful information to characterize thin beds.

It is worth mentioning that the inverse problem is poorly con-
strained in these examples, because no information is provided to re-
strict the search of the thin-bed parameters. Note that the search
ranges are very wide (y-axes in the plots), allowing for variations of
density of more than 50% of the true value, and variations of veloci-
ties of more than 100% in some cases. The search range for thickness
goes from 2 m through 40 m, and from 2 m through 25 m in the
high- and low-velocity models, respectively, independently of the
true thickness. Should well-log data be available, one or more pa-
rameters could be restricted to a narrower search range, and the un-
certainty (and the inverse problem nonuniqueness) would be re-
duced significantly. Furthermore, the information content of the data
could be increased by using more traces (i.e., beyond 40°). The pre-
sented forward modeling has no limitations in this sense. However,
the errors associated with the mapping of the data into the required
angle-time domain would certainly increase for larger angles. In ad-
dition, there also will be more interferences, so the model assump-
tions might become less appropriate.
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Figure 7. Prestack spectral inversion in the low-velocity wedge model. Top and bottom half-space parameters are known within a 1% tolerance
error in column (a), and 10% in columns (b) and (c). Data with S/N = 100 in (a) and (b), and S/N = 101n (c). The plots show the mean solution
(squares) plus or minus one standard deviation (shaded area). Solid black lines show actual values. Tuning thickness fraction of 1.0 corresponds
to 16 m.
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Figure 8. (a) Actual gather for the low-velocity model (7 = 4.8 m,
S/N = 10). (b) Calculated gather after the inversion using the mean
model parameters. (c) Residual.
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Figure 9. (a) Seismic responses, and (b) amplitude spectra for a 4.8
-m-thick bed, for 6 = 0° (solid black) and 6 = 40° (solid gray) in the
low-velocity model. Top and bottom half-space parameters are
known within a 10% tolerance error, and S/N = 10. Dashed lines
show the calculated data using the mean parameter estimates after
the full prestack spectral inversion.
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Figure 10. Wavelet amplitude spectra: true spectrum (solid), and ap-
proximate spectrum (dashed).
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Figure 11. Prestack spectral inversion in the high- (a) and low-veloc-
ity (b) wedge models, when using an approximate wavelet ampli-
tude spectrum. Top and bottom half-space parameters are known
within a 10% tolerance error, and S/N = 10. The plots show the
mean solution (squares) plus or minus one standard deviation (shad-
ed area). Solid black lines show actual values. Tuning thickness frac-
tion of 1.0 corresponds to 26 m and 16 m, respectively.

CONCLUSIONS

The amplitude spectrum of zero-offset data does not provide
enough information to determine the thin-bed thickness (in length
units) and its elastic parameters simultaneously, because there are
many inherent ambiguities that cannot be resolved. On the contrary,
the amplitude spectra of prestack data provide enough information
to determine all the thin-bed parameters, including thickness, densi-
ty, and compressional and shear velocities. In a practical context, the
fact that the method requires neither phase information nor NMO
corrections constitutes an advantage. At the same time, the proce-
dure allows one to adjust the estimates of the elastic properties and
densities of the media lying above and below the thin bed. The use of
SA permits us to solve the highly nonlinear constrained optimization
problem associated with the inversion of the prestack data. The re-
sults using simulated noisy data are encouraging because they sug-
gest that beds as thin as a few meters can be characterized fully with a
reasonable uncertainty and accuracy. When only an approximate
wavelet amplitude spectrum is available, the results still are robust
under noisy conditions, especially when data show a significant AVA
anomaly.
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We believe that this methodology could be adapted to encompass
multiple layers. This issue and the application of the inversion proce-
dure to real data will be considered in future works.
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