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ABSTRACT

Stationary segments in well log sequences can be automatically detected by searching for change
points in the data. These change points, which correspond to abrupt changes in the statistical nature of
the underlying process, can be identified by analyzing the probability density functions of two adjacent
sub-samples as they move along the data sequence. A statistical test is used to set a significance level
of the probability that the two distributions are the same, thus providing a means to decide how many
segments comprise the data by keeping those change points that yield low probabilities. Data from
the Ocean Drilling Program were analyzed, where a high correlation between the available core-log
lithology interpretation and the statistical segmentation was observed. Results show that the proposed
algorithm can be used as an auxiliary tool in the analysis and interpretation of geophysical log data for
the identification of lithology units and sequences.
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INTRODUCTION

Segmentation is an important data mining process. One important application is the identification of
locally stationary intervals, or, equivalently, the location of change points. In this context, segmentation
(also known as zonation) is the dividing of a sequence into relatively homogeneous and stationary intervals,
such that each segment is distinctive from the adjacent ones. Well logs can be subdivided into relatively
uniform segments that represent zones of similar lithologic character (stratigraphic units and formations).
Segment boundaries correspond to abrupt changes in the layering, and conform the limits of relatively
stable periods or geologically meaningful zones. These elementary units of similar properties can then be
used as the basis for inferring correlations between wells. A different approach consists on blocking or
filtering the data to get a simpler approximation (e.g. piecewise constant segments). This segmentation
problem will not be considered here, and the reader is referred to, for example, Kaaresen and Taxt (1998)
and the references therein for details. In this work, the focus is put into the identification of statistically
distinct intervals in the log sequences.

There are various strategies for addressing this segmentation problem. Classical approaches include
the detection of abrupt changes in the mean (Webster, 1973) or in the variance (Gill, 1970; Hawkins
and Merriam, 1973). General description of these techniques are in Davis (1986). Recent studies include
zonation by means of cluster analysis (Gill, Shomrony, and Fligelman, 1993), spectral analysis for identi-
fying stationary intervals (Ligges, Weihs, and Hasse-Becker, 2002), etc. The method presented here takes
into account both the mean and the variance, and also higher-order robust statistics such as certain non
conventional skewness and kurtosis measures (Velis, 2003) to identify change points. Essentially, a split
window is moved along the sequence and the probability density functions (pdf) of the two adjacent half-
windows are compared. When a significant difference is detected, a change point is identified. Smooth
pdf’s are estimated using the maximum entropy method as described in Velis (2003), which guarantees
robustness when dealing with short data sequences. Finally, a criterion for deciding which is the number
of segments that comprise the data is proposed.

The effectiveness of this strategy is supported by the analysis of various examples using simulated
and real data sequences derived from well-logs. The real data comprises various borehole measurements
which are part of the Ocean Drilling Program, Leg 197, Site 1203 (Tarduno, Duncan, and Scholl, 2002).
At this site, the lithology interpretation based on extensive core samples and logging data analysis
was available, so it was possible to make a comparison between this interpretation and the statistical
segmentation. Results show that there is a high correlation between the published core-log lithology and
the segmentation generated by the proposed statistical procedure.

THE PROBLEM

Let ~x = (x1, x2, · · · , xN ) be the sequence of well log data. The objective of the segmentation process
is to subdivide this series into smaller segments so that each interval is relatively locally stationary. That
is, we look for a sequence of change points

~t = (t1, t2, · · · , tM ), (1)

which satisfy

1 = t1 < t2 < · · · < tM−1 < tM = N. (2)

These indexes determine a set of M − 1 segments of length

Tj = tj+1 − tj . (3)

In practice the algorithm proceeds iteratively by searching successive change points {tj} based on
the assumption that two adjacent intervals are distinct when the pdf’s of the data on each side of tj are
significantly different. For this purpose, a split window of length 2L is centered at location tj , and the
corresponding pdf’s are estimated and compared appropriately.

Here, L should be short enough to allow for the identification of short stationary intervals. Thus, a
robust pdf estimation method that works well even for short data sequences is required. The maximum
entropy (MaxEnt) method with moment constraints described in Velis (2003) produces smooth non-
parametric pdf’s which are consistent with the data. The approach utilizes robust statistics computed
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directly from the data to constrain the maximization of the pdf entropy. These statistics (called S-
measures) involve non-conventional skewness and kurtosis indices that measure shape and proved to be
appropriate to identify the main features of the distribution of primary reflection coefficients (reflectivity).
In exploration Seismology the reflection coefficient is the ratio of the amplitude of the displacement of
the reflected wave to that of the incident wave. The reflectivity is one of the components, together with
the seismic wavelet, of the so called convolutional model of the seismic trace, specially valid for layered
geological models (Yilmaz, 2001).

The strategy to carry out the segmentation is based on the sliding window approach, which consists on
moving the analyzing window along the whole sequence, and assigning a change point when a significant
difference between the pdf’s is observed. To avoid the assigning of change points which are too close,
we found it more appropriate to look for a single change point at a time. Starting with j = 2 (recall
that t1 = 1), we look for optimum change points until the next change point that is added does not
yield a significant difference between the adjacent pdf’s. These optimum change points correspond to the
smallest probabilities along the whole sequence for the current iteration.

THE ALGORITHM

Let t̂ be the current estimate of the j−th change point. Let ~u = (xt̂−L, xt̂−L+1, · · · , xt̂) and ~v =
(xt̂, xt̂+1, · · · , xt̂+L) be the two subsets of ~x spanned by the split window, and p̂u(~u) and p̂v(~v) be the
corresponding estimated pdf’s, which are to be compared. Rather than measuring the difference between
p̂u and p̂v, we measure the difference between their respective cumulative distribution functions (cdf), P̂u

and P̂v, using the Kuiper test (the cdf’s are calculated numerically by integrating the pdf estimates). The
Kuiper test, a variant of the well known Kolmogorov-Smirnov test (Press and others, 1992), quantifies
the difference between two cdf’s. The Kuiper statistics is

V = max
a≤x≤b

(P̂u − P̂v) + max
a≤x≤b

(P̂v − P̂u), (4)

where a and b define the region of support of the cdf (usually the minimum and maximum values in the
data set). It turns out that the distribution in the case of the null hypothesis that the two data segments
come from the same distribution can be calculated asymptotically, giving rise to a formula that allows
one to compute the significance level (Press and others, 1992):

Probability(V > observed) = 2
∞
∑

i=1

(4i2λ2 − 1)e−2i2λ2

, (5)

where

λ =

(

√

L

2
+ 0.155 + 0.24

√

2

L

)

V. (6)

The segmentation algorithm is a three stage process. In the first stage the probability (5) is calculated
for every possible change point location throughout the whole sequence in the range (L,N − L). In the
second stage change points candidates are added according to the following strategy: at the beginning,
the point with the smallest probability is selected as a candidate for the first change point, yielding t2 and
the new segmentation (t1, t2, t3), which is comprised of two segments of lengths T1 and T2, respectively.
Then, a new change point is added by selecting the smallest probability within the current longest segment
(largest Tj), giving rise to a new partition (t1, t2, t3, t4). This process is repeated and new change points
are added (within the longest segments obtained so far) until all segments are shorter than a given
minimum length, Tmin.

The third stage of the algorithm consists on discarding those change points whose associated proba-
bilities are larger than a predefined threshold. Also, the change points with largest probabilities in excess
of a predefined number of change points are deleted. Note that a large probability is indicative of a
high degree of confidence on the null hypothesis that the two distributions are the same, so low values
of probability are desired to obtain a high confidence on the hypothesis that the two distributions are
different. To avoid too fine segmentations (i.e. two change points separated by a few samples), a minimum
separation ∆ between two consecutive change points is forced by adjusting the search range accordingly.

Step by step, the algorithm is as follow:
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1. Set j = 1.

2. For every t̂ in the initial search range (L,N − L),

(a) set ~u = (xt̂−L, xt̂−L+1, · · · , xt̂) and ~v = (xt̂, xt̂+1, · · · , xt̂+L),

(b) estimate p̂u and p̂v using the MaxEnt method,

(c) estimate P̂u and P̂v by numerical integration,

(d) compute V and evaluate the probability (5).

3. Set j = j + 1.

4. Find the smallest probability within the current search range to get a new optimum change point:
tj .

5. Sort, in ascending order, the current set of change points and update the segmentation (t1, t2, · · · , tj , tM ).

6. Compute segment lengths according to Equation (3).

7. Update the search range: (tjmax + ∆, tjmax+1 − ∆), where tjmax is the beginning of the longest
segment, Tmax.

8. If Tmax > Tmin go to step 3.

9. Delete all change points whose probabilities are larger than a predefined significance level.

10. Delete all change points in excess of a predefined maximum number of change points whose prob-
abilities are largest.

TEST RESULTS

To check the consistency of the segmentation algorithm, we applied it to the simulated sequence
(8400 random values) shown in Figure 1. The sequence was generated by concatenating samples drawn
from eight different non-parametric distributions. These distributions were selected so as to simulate a
realistic reflectivity sequence (Velis, 2003), and are shown in Figure 2.

In the segmentation process we set L = 250 and ∆ = 200, and change points were added until no
segment was larger than Tmin = 200 samples. At the end of the process, those change points with the
associated probability larger than 0.01 were discarded. This significance level was chosen based on the
inspection of Figure 3, where the probability (5) was plotted in ascending order for all the identified
change points. For values larger than about 0.01, the probability of the null hypothesis that the two
distributions are the same increases rapidly. The estimated change points are shown in Figure 1 and in
Table 1, along with the correct change points. All eight segments were identified correctly.

The next example shows the results of the segmentation process when applied to various geophysical
logging data sequences. The data, which are part of the Ocean Drilling Program (Leg 197, Site 1203),
were collected to characterize the southward motion of the Hawaiian Hotspot in the Emperor Seamount
trend (Tarduno, Duncan, and Scholl, 2002). The drilling achieved moderate basement penetration and
high recovery allowing for a detailed lithostratigraphy analysis. Downhole measurements, which are of
very good quality in the basement sections, included various standard and non-standard tool strings and
passes.

Figure 4 displays all data sequences used in the segmentation procedure. In particular we selected
total natural gamma ray, electrical resistivity, bulk density, porosity and S-wave velocity. The sampling
interval is 0.1524 m, and each data sequence contains about 3300 samples in the considered interval. The
last column of the figure, labeled “mean standardized log data”, was built so as to take into account all
logging data into a single sequence. For this purpose the five previous sequences were standardized and
averaged with equal weight and appropriate sign into a single sequence (the logarithm of the electrical
resistivity was used in this sum. The polarity of both the total natural gamma ray and porosity was
changed before the sum). The resulting “mean” sequence was the data that we actually used to carry out
the statistical segmentation. Note that this sequence exhibits features of the five previous data sequences,
allowing for a full multivariate segmentation of the whole data set.
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The results of the segmentation are shown in the same figure along with the available core-log lithology
interpretation. The available interpretation in the analyzed interval (400–900 meters below sea-floor,
mbsf) comprises 30 units of alternating sediments (ooze and volcaniclastic) and basalts. The basement
starts at about 460 mbsf. For details please see (Tarduno, Duncan, and Scholl, 2002). As for the statistical
segmentation process we set L = 31, ∆ = 31 and Tmin = 50 (sample units) and we kept the 32 change
points with the lowest probabilities. In general, the correlation between the statistical segmentation
and the core-log interpretation is from good to excellent. All major units were correctly identified. In
particular, all the units identified in the available log interpretation were automatically detected by the
statistical segmentation algorithm, except for the thin layers at about 475 mbsf (unit 2), 490 mbsf and
850 mbsf. In any case, these thin beds are not so clear by inspecting the considered log data. Actually,
except for unit 2, the other two beds were not identified in the core lithology analysis. On the other
hand, there is a total of 12 change points (denoted by dashed lines in the figure) which are not identified
in the available log lithology interpretation. Some of these change points may be associated to units
clearly identified in the core lithology. For example, units 27 and 28 are identified as a single unit in
the available log lithology, but as two units in the statistical segmentation, in accordance to the core
lithology analysis. The same can be said for units 19 and 20. Moreover, units 12, 13 and 14 are identified
as two units in the available log interpretation, but correctly as three distinct units in the statistical
segmentation. Finally, some of the remaining detected change points that do not correlate with the
available core-log interpretation may be associated to a fine lithology layering (e.g. division of units into
sub-units, etc.). In effect, the three change points detected in unit 4 by the statistical segmentation at
505, 515 and 524 mbsf, for example, correlate very well with core-lithology subunits 4i, 4k and 4m at 508,
516 and 523 mbsf, respectively. These subunits are not indicated in the core lithology column, and the
interested reader can find detailed information in Tarduno, Duncan, and Scholl (2002). A deeper analysis
regarding subunits is beyond the scope of this work.

Another point worth mentioning is the accuracy of the detected change points. The statistical seg-
mentation procedure automatically detects very accurately the presence of a change point. Based on the
information provided by the core interpretation, the thickness of unit 22, for example, is about 14 m. The
same value is obtained after the statistical segmentation. On the contrary, the available log interpretation
estimates a thickness of about 16.5 m.

CONCLUSIONS

The detection of stationary segments in geophysical log data sequences can be carried out in a quasi-
unsupervised mode by searching for change points in the data. The MaxEnt method using robust non-
conventional statistics that measure shape provides an appropriate technique to estimate the distributions
that are to be compared. After estimating the distributions of the two halves of a moving window, abrupt
changes are easily identified based on the analysis of the probability of the null hypothesis that the two
distributions are the same. The Kuiper test proved to be a useful criterion to decide which change points
lead to significant differences between adjacent distributions. This provides a means of choosing the
appropriate number of locally stationary segments that the data sequence can be subdivided into.

The statistical segmentation algorithm presented in the work is viewed as an auxiliary tool that may
contribute useful information in the identification of the main lithology units and sequences as derived
from measured geophysical log data. The zonation of a borehole environment is an essential step in the
correlation of subsurface layers between wells, with application in oil exploration and reservoir evaluation.
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FIGURE AND TABLE CAPTIONS

Figure 1: Simulated random sequence comprised of eight statistical independent segments. The
segmentation is indicated by vertical lines: true (top) and estimated (bottom). Table 1 shows the exact
location of the change points.

Figure 2: Probability density functions used to generate the reflectivity sequence shown in Figure 1.

Figure 3: Probability of the null hypothesis that the two distributions are the same. The plot reveals
an abrupt change at about 0.01, a value which is selected as a threshold to discard change points with
high probabilities in the third stage of the segmentation process.

Figure 4: Segmentation of the Ocean Drilling Program Downhole logs (Leg 197, Site 1203). The left
panel shows the core and log lithology columns after Tarduno, Duncan, and Scholl (2002), together with
the unit number identification. Total natural gamma ray, electrical resistivity, bulk density, porosity and
S-wave velocity were combined into a single sequence named “mean standardized log data” (see text for
details). The statistical segmentation algorithm detected the 32 change points indicated by horizontal
lines (dashed lines correspond to change points that do not correlate with the available log lithology
column). The same color code was used in all cases in order to facilitate the visual comparison between
the available core-log interpretation and the results of the statistical segmentation.

Table 1: The eight segments used to build the sequence shown in Figure 1 and their corresponding
change points (true and estimated), Kuiper statistics and associated probability.

8



 0  1000  2000  3000  4000  5000  6000  7000  8000

sample

1 2 3 4 5 6 7 8

F
igu

re
1:

9



 0

 20

 40

 60

-0.06 -0.03  0  0.03  0.06

amplitude

 1

2

 34

5

 6

7

 8

Figure 2:

10



 0

 0.05

 0.1

 0.15

 0.2

4 8 12

pr
ob

ab
ili

ty

change point

Figure 3:

11



 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

m
bs

f

core unit

1
2

3

4

5-6

7

8
9-10
11

12-13

14
15
16
17

18

19

20

21

22

23

24-25

26

27
28
29

30

LITHOLOGY
Tarduno, Duncan, and

Scholl (2002)

log  0  40  80

Total natural
gamma ray

(API)
 0  40  80

Total natural
gamma ray

(API)
 0.1  1  10  100

Electrical resistivity
(Ωm)

 0.1  1  10  100

Electrical resistivity
(Ωm)

 1.2  2.2  3.2

Bulk density
(g/cm3)

 1.2  2.2  3.2

Bulk density
(g/cm3)

 0  50  100

Porosity
(%)

 0  50  100

Porosity
(%)

 0  2  4

S-wave velocity
(km/s)

 0  2  4

S-wave velocity
(km/s)

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

-2  0  2

m
bs

f

Mean standardized
log data

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

-2  0  2

m
bs

f

Mean standardized
log data

CORE LITHOLOGY

Sediment (ooze)

Basalt

Volcaniclastic sediment

CORE LITHOLOGY

Sediment (ooze)

Basalt

LOG LITHOLOGY

Sediment (ooze)

Basalt massive unitBasalt pillow lobe

Volcaniclastic sediment

F
igu

re
4:

12



pdf tj t̂j V Prob

1 1 - - -
2 1751 1751 0.360 0.00000
3 2601 2601 0.198 0.00162
4 4151 4179 0.196 0.00189
5 5051 5055 0.318 0.00000
6 5951 5957 0.469 0.00000
7 6451 6439 0.355 0.00000
8 7426 7487 0.230 0.00006

Table 1:
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