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We present an adaptive filtering method to denoise downhole microseismic data. The methodology uses the
apex-shifted parabolic Radon transform. The algorithm is implemented in two steps. In the first step we apply
the apex-shifted parabolic Radon transform to the normalized root mean square envelope of the microseismic
data to detect the presence of an event. The Radon coefficients are efficiently calculated by restricting the integra-
tion paths of the Radon operator. In a second stage, a new (preconditioned) Radon transform is applied to
individual components to enhance the recorded signal. The denoising is posed as an inverse problem
preconditioned by the Radon coefficients obtained in the previous step. The algorithmwas tested with synthetic
and field datasets that were recorded with a vertical array of receivers. The method performs rapidly due to the
parabolic approximation making it suitable for real-time monitoring. The P– and S–wave direct arrivals are
properly denoised for high to moderate signal-to-noise ratio records.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Low permeability reservoirs require fluid injection in order to
fracture the bedrock and favor hydrocarbon extraction. This gives rise
to a broad set of geophysical applications designed to monitor the
reservoir dynamics while controlling the injection process. The micro-
seismicity induced by the hydraulic fracturing is characterized by
small magnitude micro-earthquakes (Maxwell and Urbancic, 2001).
Therefore, microseismic data are generally acquired in low signal-
to-noise (S/N) environments. Furthermore, inadequate array coverage
and imprecise knowledge of subsurface P– and S–wave velocitymodels
complicate the detection and location of microseismic events (Eisner
et al., 2009).

Microseismic acquisition projects can be divided according to two
different scenarios: surface and downhole monitoring. This paper
focuses on downhole geometries and on the problem of detecting and
enhancing microseismic events. Downhole acquisition configurations
involve arrays of three-component geophones buried in vertical or
deviated boreholes close to the injection well (Maxwell and Rutledge,
2010).

Noise-suppression has become an important challenge to precondi-
tion microseismic data for the estimation of the event location and
inversion of the seismic moment tensor. Accurate locations and
moment tensor information are of paramount importance for the
bbione), msacchi@ualberta.ca
correct derivation of fracture positions and source mechanisms
(Eisner et al., 2011; Kendall et al., 2011; Leaney, 2008; Vera Rodriguez
et al., 2012). Thus, signal enhancement techniques are an important
component of current efforts to properly analyze and invert microseis-
mic data. In this sense, Vera Rodriguez et al. (2012) introduced a time-
frequency basis pursuit denoising algorithm for multicomponent
microseismic data. Recently, Forghani-Arani et al. (2013) proposed a
τ − p transform to suppress noise in microseismic data acquired by
surface arrays. In this article we focus our attention to the problem of
denoising borehole microseismic data via the apex-shifted parabolic
Radon transform (ASPRT) (Hargreaves et al., 2003; Trad, 2003).

In reflection seismology, Radon transformshave beenwidely used to
increase the S/N of seismic gathers and to remove multiple reflections
(Hampson, 1986; Russell et al., 1990a, 1990b; Yilmaz, 1989). In this
paper, we propose to detect microseismic signal arrivals and denoise
the data using an adaptive filtering method that follows a Radon trans-
form formulation that is often utilized in reflection seismology.

This paper is organized as follows. We first describe the two-stage
algorithm for microseismic data denoising. The first stage is used
for the detection while the second is used for the denoising. For the
detection, we use the apex-shifted parabolic Radon transform of the
normalized root mean square envelope of the microseismic data,
which is similar to the 3C envelope energy suggested by Michaud and
Leaney (2008). Then,we use this information todetermine a support re-
gion in the Radon domain that contains the signal arrivals (P– and S–
waves). This permits to enhance the S/N of each component of the
data by posing the Radon representation of the data as an inverse
problem with restricted support. We first evaluate the algorithm with
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Fig. 1. Synthetic dataset 1: S/N = 100 (negligible noise). (a) x-component. (b) y-component. (c) z-component. (d) Normalized root mean square envelope attribute e.
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synthetic datasets. Then, we evaluate it with field datasets that portray
different noise levels. In addition,we include a discussion section and an
appendix to analyze the validity of the parabolic approximation and the
reliability of the results in view of the algorithm's parameters selection.

2. Method

We present a two-step method to detect and denoise microseismic
events. For this purpose, we utilize the apex-shifted parabolic Radon
transform (ASPRT)first introduced in reflection seismology to attenuate
diffracted multiples (Hargreaves et al., 2003; Trad, 2003).

2.1. Parabolic approximation

We consider a constant velocity 2D medium. Let us assume an array
of receiverswith coordinates (x, z) deployed on a vertical borehole close
to the source of microseismic events. For this geometry, the recorded
travel-times for a seismic event occurring at coordinates (xs, zs) is
given by

t zð Þ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xsð Þ2
v2

þ z−zsð Þ2
v2

s
; ð1Þ
Fig. 2. Synthetic data example 1. Low resolution Radon coefficientsme(τ, q, zs) thresholded
using Eq. (7) with α1 = 4. The color-map scale is clipped at 7 so as to make the high am-
plitudes more clear (recall that the maximum ofme is 8).
where t0 is the time of the event relative to the origin of the recording
time and v is the P– or S–wave velocity of the medium. We can rewrite
Eq. (1) via the following expression

t zð Þ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2a þ

z−zsð Þ2
v2

s
; ð2Þ

where ta = (x − xs)/v. Eq. (2) represents an apex-shifted hyperbola
with the apex shifted by zs and the time of the apex relative to the origin
of the recording time given by t0 + ta.

We can now introduce the following parabolic approximation

t zð Þ ¼ t0 þ ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z−zsð Þ2

t2av
2

s

≈t0 þ ta þ q z−zsð Þ2

≈τ þ q z−zsð Þ2;

ð3Þ

where t0 and ta were combined into a single time variable τ = t0 + ta
and the curvature of the parabola is given by

q ¼ 1
2 ta v

2 : ð4Þ

Thus, we obtain the expression of the shifted parabola that we
will utilize for our Radon transform. It is worth mentioning that the
parameter q in Eq. (4) is interpreted as an effective curvature that in
real scenarios might not yield a realistic velocity v (Blias and Grechka,
2013; Yilmaz, 2001). In other words, we will not use the estimated
parameter q to infer velocity information via Eq. (4). In fact, q is
interpreted as a kinematic parameter to stack energy across parabolic
paths.

By adopting the parabolic approximation we have replaced the two
temporal variables t0 and ta by a single variable τ. The integration path
given by Eq. (3) leads to the so called ASPRT (Hargreaves et al., 2003;
Trad, 2003). The validity of the parabolic approximation for constant
velocity media is discussed in Appendix A.

2.2. Event detection via the ASPRT

Wedenote the three-component data recorded by a vertical array of
receivers by dx(t, zj), dy(t, zj) and dz(t, zj), j=1…N, where zj is the ver-
tical position for the receiver j and N is the number of receivers of the
array. We also define the envelope of the x, y and z components by
ex(t, zj), ey(t, zj) and ex(t, zj), respectively. In low S/N environments, it



Fig. 3. Synthetic data example 1: Low resolution Radon coefficients of the normalized root mean square envelope. Each panel corresponds to a single source location zs. (a) Vectorized
coefficients me

v. The white lines correspond to α1 = 4 and α2 = 2. (b) Radon (τ, q) panels without any thresholding. (c) Radon (τ, q) panels thresholded by α1 = 4 (detection step).
(d) Radon (τ, q) panels thresholded by α2 = 2 (denoising step).
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is often preferable to detect seismic arrivals by processing the average
envelope function of the three-component seismograms (Michaud
and Leaney, 2008). In this study, we define the normalized root mean
square envelope via the following expression

e t; z j
� �

¼ c j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex t; zj
� �2 þ ey t; z j

� �2 þ ez t; z j
� �2

r
; j ¼ 1;…N ð5Þ

where the scalar cj is the normalization factor such thatmax[e(t, zj)]= 1
for all j. We also define the adjoint apex-shifted parabolic Radon
operator over thenormalized rootmean square envelope via the follow-
ing sum

me τ; q; zsð Þ ¼
X
z

e τ þ q z−zsð Þ2; z
� �

: ð6Þ

This formula can be implemented in an efficient and rapid way
by restricting the pairs (q, zs) after considering the dependency of the
minimum and maximum expected arrival times on the parameters q
and zs (Appendix B). By virtue of the normalization of the root mean
square envelope, it is clear that an event parameterized by (τ*, q*, zs⁎)
will lead tome(τ*, q*, zs⁎) ≃ N. We will use this simple concept to define
a criterion in the Radon domain to detect the presence of amicroseismic
event. In this sense, the presence of an event is detected if there exist
parameters (τ*, q*, zs⁎) such that

me τ�; q�; z�s
� �

≥ α1; ð7Þ

where α1 is a threshold that can be used to control the sensitivity of the
event detection stage. In our code, we adopted α1 = N/2.

2.3. Denoising individual components via a fast ASPRT inversion

Once a microseismic event was identified by the aforementioned
detection algorithmcriterion,we utilize theASPRT to denoise individual
components. For this purposewe first use the Radon coefficients obtain-
ed from the normalized root mean square envelope to estimate the
region of support of the microseismic signal in the space (τ, q, zs) and
to estimate a weighting function that we will utilize to precondition
the denoising algorithm.

We first define a matrix of weights via the following expression

We τ; q; zsð Þ ¼ me τ; q; zsð Þ
0

if me τ; q; zsð Þ N α2
if me τ; q; zsð Þ ≤ α2;

�
ð8Þ

where α2 is another threshold parameter that represents a trade-off
between noise rejection and fitting low-amplitude signals. We also
define the subset S of parameters (τ, q, zs) of identified active coeffi-
cients that will be used to fit the data:

S ¼ τ; q; zsð Þ such that me τ; q; zsð Þ N α2f g : ð9Þ

Once the support of the signal in Radon space has been found, we
propose to use Radon synthesis operator to denoise individual com-
ponents. In this case we will represent each individual data component
as the outcome of the application of the Radon transform to the corre-
sponding series of Radon coefficients. This is expressed mathematically
via the following synthesis formula

dc t; zð Þ ¼
X
q;zsð Þ∈S

mc t−q z−zsð Þ2; q; zs
� �

for c ¼ x; y; z: ð10Þ

To facilitate the development of the algorithm, the last equation can
be written in matrix-vector form using

dc ¼ Lmc þ nc; c ¼ x; y; z ð11Þ

where dc corresponds to the c component seismogram, mc are the
associated Radon coefficients mc(τ, q, zs) in vector form, and L is the
apex-shifted parabolic Radon forward operator. Notice that in Eq. (11)
we have also added a noise term. The idea is to estimate the Radon



Fig. 4. Synthetic data example 1. The thicker gray lines show the noise-free synthetic data components (ux, uy and uz) and the black lines the corresponding denoised data components (d̂x,

d̂y and d̂z).
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coefficients from Eq. (11), and then use the estimated coefficients to
synthesize noise-free data. For this purpose, the coefficients are estimat-
ed by solving the following problem:

m̂c ¼ argmin
mc

Lmc−dck k22 þ μ Pmck k22
h i

; ð12Þ

where P is a matrix which is applied to the regularization term and μ
is a trade-off parameter. We also propose a change of variables uc =
Pmc to rewrite the cost function to minimize in standard form as
follows:

ûc ¼ argmin
u

LWeuc−dck k22 þ μ uck k22
h i

m̂c ¼ We ûc ;

ð13Þ

where it is clear that we have selected P−1 = We as the precondi-
tioning operator, whereWe is a diagonal matrix of weights whose el-
ements correspond toWe(τ, q, zs). In essence, we are preconditioning
the estimation of the Radon coefficients via a matrix of weights that
resembles a semblance function (Moore and Kostov, 2002). The lat-
ter is estimated from the average envelope and therefore, it is less
prone to be contaminated by the noise in each component. Eq. (13)
is solved using the method of conjugate gradients. Once the solution
mc is found for an appropriate trade-off value μ, it is used to synthe-
size an enhanced signal:

d̂c ¼ Lm̂c; c ¼ x; y; z: ð14Þ

This finalizes our denoising stage. We need to stress that the
denoising is only carried out when a seismic event is detected. When
the detection criterion does not find a seismic event, we simply move
to a new window and re-initiate the two-step detection-denoising
process.

3. Results

We tested our two-step algorithm with synthetic and field data
contaminated with different levels of noise.

3.1. Synthetic data

The far-field displacements recorded at each receiver for an
homogeneous velocity media are given by Shearer (1999)

ui P Sjð Þ t; xð Þ ¼ 1
4πρc3

1
r
Ri jkM

�

jk t− r
c

� �
; ð15Þ



Fig. 5. Synthetic data example 2: S/N=1.8. (a) x-component. (b) y-component. (c) z-component. (d) Root mean square envelope attribute e. (e) Denoised x-component. (f) Denoised y-
component. (g) Denoised z-component. (h) Denoised root mean square envelope attribute e.

Fig. 6. Synthetic data example 2: Low resolution Radon coefficients of the normalized root mean square envelope. Each panel corresponds to a single source location zs. (a) Vectorized
coefficients me

v. The white lines correspond to α1 = 4 and α2 = 2. (b) Radon (τ, q) panels without any thresholding. (c) Radon (τ, q) panels thresholded by α1 = 4 (detection step).
(d) Radon (τ, q) panels thresholded by α2 = 2 (denoising step).
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Fig. 7. Synthetic data example 2: Low resolution Radon coefficients for each component and the corresponding Radon coefficients synthesized by the inversion process. (a) Low resolution
coefficients for the x-componentmx. (b) Synthesized coefficients for the x-component m̂x. (c) Low resolution coefficients for the y-componentmy. (d) Synthesized coefficients for the y-
component m̂y . (e) Low resolution coefficients for the z-componentmz. (f) Synthesized coefficients for the z-component m̂z .
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where ui is the displacement for the component i, x are the 3D receiver
components, ρ is the density of themedium, c is the velocity of the P– or
S–wave, r is the distance between the source and the receiver, and Rijk is
the radiation pattern tensor due to the ith receiver component and the
jkth element of the seismic moment tensor Ṁjk. Assuming that the
seismic moment tensor can be separated into a time invariant tensor
Mjk and a source time function s(t) (Aki and Richards, 2002):

M
�

jk ¼ M jk s tð Þ: ð16Þ

Then, replacing into Eq. (15) yields:

ui P Sjð Þ t; xð Þ ¼ 1
4πρc3

1
r
Ri jkM jks t− r

c

� �
: ð17Þ

The synthetic data examples of this work were generated with
Eq. (17). We used a medium with vP = 3500 m/s and vS = 2400 m/s.
An array of N = 8 multicomponent receivers were vertically located
in the medium. For the sake of simplicity, we let the origin of the co-
ordinate system be the first (deepest) receiver position. The receivers
are thus placed at x = (0, 0, zr), where

zrj ¼ j−1ð Þδzr; j ¼ 1;…;N; ð18Þ

with z1
r = 0 m and δzr = 30 m. The source was placed at (xs, ys, zs) =

(240, 320, -140) m. Note that the horizontal distance h between source

and receivers is h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s

q
¼ 400 m. The radiation pattern is a func-

tion of the relative position of source and receivers. The source function
was modeled via a Ricker wavelet with peak frequency f0 = 60 Hz. To
introduce the source mechanism, let us call k to the unit vector normal
to the fault plane and l to the unit vector of the slip direction. The source
was modeled as a shear fracture occurring in the (x, z) plane with the
slip in the negative x direction. For that case, k = (0, 1, 0), l =



Fig. 8. Synthetic data example 2. The thicker gray lines show the noise-free synthetic data components (ux, uy and uz) and the black lines the corresponding denoised data

components (d̂x , d̂y and d̂z).
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(−1, 0, 0) and the symmetric moment tensorMwill be given by Udías
(1999):

M ¼ M0

0 −1 0
−1 0 0
0 0 0

2
4

3
5:

Finally, we added band-limited random noise to the data.

3.2. Synthetic data example 1

First, we generated a synthetic dataset in a high S/N scenario. This
dataset was generated with two purposes: (1) illustrate the proposed
technique for the signal detection and denoising, and (2) show that
the Radon-based inversion can be used to recover the multicomponent
data without degrading the amplitude information that is extremely
important for processes like seismic moment tensor inversion
(Aki and Richards, 2002; Leaney, 2008). The latter point is not trivial,
since Radon transforms assume no amplitude variation effects and
microseismic signals are critically affected by amplitude variations
caused by the radiation pattern.Wewill address this point in the section
devoted to discussions.
The first data example is shown in Fig. 1 together with the normal-
ized root mean square envelope e(t, z). The S/N was set equal to 100
(negligible noise). Note the radiation pattern effect in the data and par-
ticularly the change of polarization of the S–wave in the y-component.
To carry out the automatic detection of the microseismic event, we
transformed e(t, z) to the Radon domain using the ASPRT. The results
are given by the 3D function me(τ, q, zs), which is illustrated in Fig. 2
using a 3D plot after applying the threshold criterion (Eq. (9)) with
α2 = 2. The amplitude of eachme(τ, q, zs) value is shown with a color-
map scale. Fig. 2 shows that each value of the scanned source depth zs
gives rise to a different Radon panel in the (τ, q) domain. One can easily
identify the P– and the S–wave energy. Notice that there is a large
subset of parabolas stacking over the same microseismic event,
especially for the S–wave.

Another way of visualizing and analyzing the Radon coefficients
amplitudes is by re-organizing me(τ, q, zs) into a 1D array me

v. This
“vectorized” new array is shown in Fig. 3a to illustrate the detection
and denoising threshold criteria. Each panel corresponds to a scanned
source depth zs. Each dot corresponds to a pair (τ, q). As we limited
the number of parabolas, the number of q values for each zs is not
constant. Therefore, each panel has a different size. The white lines at
me

v = 4 andme
v = 2 correspond to α1 = 4 and α2 = 2 for the detection

and denoising thresholds, respectively. We additionally computed a 2D



Fig. 9. Field data example 1 (high S/N case): (a) x-component. (b) y-component. (c) z-component. (d) Root mean square envelope attribute e. (e) Denoised x-component. (f) Denoised y-
component. (g) Denoised z-component. (h) Denoised root mean square envelope attribute e.
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Radon panel me(τ, q) for every source position zs. These panels are
shown in Fig. 3b with no threshold, in Fig. 3c thresholded by α1 = 4,
and in Fig. 3d thresholded by α2= 2. Fig. 3 demonstrates that the signal
detection, in this case, is due to the S–wave arrival energy, because the
P–wave energy is below α1 but above α2. By comparing Fig. 3b with
Fig. 3d one can notice that a small portion of low amplitude signal will
not be considered in the subset S used for the denoising step.

Once the event was detected via the α1-thresholding, we synthe-
sized the Radon representation for each data component with Eq. (13)
using the subset S that is derived after applying the α2-thresholding
(Fig. 3d). The denoised components are obtained transforming back to
the time domain with the forward operator (Eq. (14)). The results are
shown in Fig. 4 (black lines) superimposed onto the synthetic noise-
free data components (gray lines). In this example, denoising was not
problematic because S/N=100. However, we stress that the waveform
and amplitudes were recovered with great accuracy, especially for the
S–wave. Note that in the y-component of the S–wave the arrivals pres-
ent a change of polarity and the signal amplitudes are very low due to
the radiation pattern. Nonetheless, we observe a remarkable agreement
between the observed and predicted data. The only significant discrep-
ancies that arise are observed for the P–wave, where some low ampli-
tude side-lobes were missed. These discrepancies can be explained as
follows: these arrivals exhibit low amplitude and thus the number of
Radon coefficients that passed the α2-thresholding is very small.

3.3. Synthetic data example 2

The second synthetic example was generated using S/N = 1.8. The
data components, the normalized root mean square envelope, and the
denoised data are shown in Fig. 5. The P–wave signal was masked
by the noise in the x- and z-components. The noise also corrupted the
y–component of the S–wave. The P–wave arrivals are hardly distin-
guishable by visual inspection, not even analyzing the normalized root
mean square envelope (Fig. 5d). However, the method succeeded in
cleaning the microseismic arrivals for both the P– and the S–wave
signals.

In Fig. 6 we show the vectorized 1D arrayme
v Radon coefficients and

theRadon (τ, q) panels that lead to our detection criterion and to the do-
main restrictionwe used for the denoising. By comparing Fig. 6b and d it
is clear that the α2-thresholding rejectedmost of the noise components.
In Fig. 7 we show the low resolution Radon panels for each data compo-
nent and the synthesized coefficients that result from the inversion. The
low resolution coefficients (Fig. 7a, c and e) were estimated using the
adjoint operator (Eq. (6)) without the thresholding. It is interesting to
note that the S–wave microseismic arrival energy is clear in the x- and
z-components (see Fig. 7a and e, respectively), while the P–wave
microseismic arrival energy is clear in the y-component only (Fig. 7c).
However, in our automatic strategy, we do not have this information
in advance. We are only exploiting the information given by
me(τ, q, zs) to synthesize each data component. For this reason, in
Fig. 7b, d and e the signal is highly focused on the coefficients shown
in Fig. 6d.

Finally, to evaluate the denoising results, we present the noise-free
data together with the denoised traces in Fig. 8. The amplitudes and
waveforms were very well recovered, except for those components
and phases for which the signal was totally masked by the noise. Partic-
ularly, the S–wave signal amplitude is very low in the y-component, and
the algorithm outputs noise in these cases.



Fig. 10. Field data example 1 (good S/N case). The thicker gray lines show the raw data components (ux, uy and uz) and the black lines the corresponding denoised data components (d̂x, d̂y
and d̂z).
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3.4. Field data example 1

We tested the algorithm with field datasets with different S/N. The
first dataset is shown in Fig. 9 (top row). Only a single phase arrival is
above the noise level. Assuming that the source mechanism is a shear
fracture, this energy is probably due to the S–wave. The 5th channel of
the x-component is corrupted and sowemuted it. Although the records
are noisy, the event was very well isolated by the algorithm (see Fig. 9e,
f and g). Nonetheless, one should note that although the signal is severe-
ly contaminated by the noise in the x- and y-components, the S/N of the
z-component is relatively high. This makes the proposed detection-
denoising strategy perform very well.

We show a detailed view of the results in Fig. 10, where we
superimposed the raw traces onto the corresponding denoised ones.
We point out that the original noise-free data are not available for
these field data examples. Nevertheless, one can evaluate the results
after noting that the algorithm performed as expected by recovering
consistent waveforms at the appropriate locations in most of the
individual traces. However, it is very difficult to assess, for example,
whether in channels 1 and 2 for the x- and y-components (where
the S/N is very low) the algorithm outputs noise or the actual signal.
Likewise, we intentionally let the method invert the muted trace
(5th channel of the x-component). As a result, a low amplitude signal
consistent with the nearby waveforms was “reconstructed” after the
process.
3.5. Field data example 2

The second field dataset is shown in Fig. 11 (top row). This dataset is
more challenging than the previous one, because most traces are very
noisy. Despite the fact that themicroseismic arrivals are only easily dis-
tinguishable in the y-component, the use of the normalized root mean
square envelope e helps to increase the confidence of the signal detec-
tion. We show the results of the event detection and denoising in
Fig. 11 (bottom row). Although the results are not optimal, we want
to stress that the detection is obtained automatically. Further, the S/N
is increased significantly after the denoising step, even for those chan-
nels where the signal arrival was barely distinguishable.

Fig. 12 compares the individual raw traces with the denoised ones.
Again, the algorithm succeeded to denoise those traces inwhich themi-
croseismic arrivals are not completelymasked by the noise (particularly
for the y-component). On the other hand, and due to the extremely low
S/N, the signal cannot be isolated in some channels. Nevertheless, the
denoised data provide an acceptable solution of improved quality as
compared with the original data.

4. Discussion

There are some hypothesis and assumptions made by our algorithm
that are worth discussing. First, our method is derived using the con-
stant velocity assumption. However, the velocity we are considering



Fig. 11. Field data example 2 (low S/N case): (a) x-component. (b) y-component. (c) z-component. (d) Root mean square envelope attribute e. (e) Denoised x-component. (f) Denoised y-
component. (g) Denoised y-component. (h) Denoised root mean square envelope attribute e.
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has not a strict physical meaning. In Eqs. (1) and (2), for example, one
should interpret the parameter v as an “effective” velocity (Yilmaz,
2001; Blias and Grechka, 2013). Moreover, after the parabolic approxi-
mation, we are just considering those triplets (τ, q, zs) that best stack
over the microseismic signal. Therefore, v is a parameter related to τ
and q (see Eqs. (3) and (4)) which does not need to have a physical
meaning.

The second hypothesis of the proposed algorithm is related to the
parabolic approximation. We showed in Appendix A that for some ge-
ometries this should not be a problem, in spite of the errors that may
arise by considering a parabola instead of an hyperbola in cases with
large array apertures. For those scenarios, an alternative solution is to
consider the actual hyperbolic arrivals times and use an apex-shifted
hyperbolic Radon transform (Sabbione et al., 2013). However, a hyper-
bolic Radon transform is a 4Dmapping that involves the scanning of an
extra parameter for a 2D geometry model. Although more accurate, the
computational cost increases significantly with respect to the proposed
ASPRT, and fast almost real-time processing could not be considered. In
other words, the parabolic Radon-based algorithm proposed in this
work can be used to detect microseismic signals in real time, while
the hyperbolic Radon-based method cannot.

The third and last hypothesis assumed in this work has to do with
the representation of the data in the Radon domain. We could, for in-
stance, have adopted the high resolution Radon transform (Thorson
and Claerbout, 1985; Sacchi and Ulrych, 1995; Trad et al., 2003) that as-
sumes that parabolic events can bemodeled via a small number of coef-
ficients in the Radon panel. This is true when seismic reflections exhibit
a moderate amplitude variation with offset (AVO) effect. A high resolu-
tion Radon transform that preserves AVO effects has been proposed by
Wang et al. (2011). However, this algorithm requires the estimation of
two Radon panels: one to model the intercept and one to model the
gradient. Modeling radiation patterns is more difficult than modeling
moderate AVO effects. In addition, AVO preserving Radon algorithms
are more expensive in terms of computational cost than traditional al-
gorithms. The latter is the main reason why we have not utilized AVO
preserving high resolution Radon transform algorithms tomodelmicro-
seismic data. We do understand that the forward Radon operator that
we have proposed in this paper cannot handle strong variations of am-
plitudes caused by radiation patterns if one were to invert it via a spar-
sity constraint. This is why we resorted to utilize a least-squares Radon
transformwith pre-defined regions of support andwith a precondition-
ing operator derived from the average envelope. Given that the Radon
transform panel is non-sparse and contains many coefficients in the
area of support of the elements (τ, q, zs), the strong radiation patterns
are modeled without incurring the problems associated with the mis-
match that exists between observed andmodeled responses. Neverthe-
less, a few low-amplitude discrepancies may arise as we showed in the
first synthetic data example.

Ourmethod requires two parameters: the threshold α1 for the auto-
matic signal detection and the threshold α2 for the Radon domain re-
striction that leads to the S/N enhancement. The detection criterion is
simple and relies in a single parameter easily tuned by virtue of the nor-
malization of the root mean square envelope. In fact, we set α1=N/2 in
all examples,whereN is the number of receivers. The algorithmwas de-
vised to be applied in partially-overlapped moving windows that scan
for microseismic events automatically. In this work we only show win-
dows containing a single microseism after the event detection step.
However, the method permits to denoise more than one event within
the window of analysis. This situation is equivalent to detecting two
phases (as shown in the synthetic examples) where the S–wave
masks the P–wave and the algorithm denoised the signal correctly.
We should stress that although we did not show the complete datasets,



Fig. 12. Field data example 2 (poor S/N). The thicker gray lines show the raw data components (ux, uy and uz) and the black lines the corresponding denoised data components (d̂x, d̂y and d̂z).
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there were no false detections neither for the synthetic nor for the field
data examples. In this sense, the largest Radon coefficientmax[me]with-
in the analyzed window acts as a confidence indicator. The likelihood of
detecting a false event is high when max[me] is close to α1. In practice,
we use max[me] to asses the reliability of the corresponding detected
event. Regarding the domain restriction, the selection of α2 is a trade-
off between preserving low-amplitude signals and noise rejection. In
other words, α2 could be related to the S/N of the microseismic data.
We believe that in general α2 = N/4 is a good figure to reject most of
the noise energy and to avoid killing the signal.

Although surface monitoring arrays are beyond the scope of this
work, we briefly discuss how one could generalize the proposed meth-
od to cope with surface microseismic data (Thornton and Eisner, 2011).
In this situation, we need to consider a 3D scenario to model the data.
Assuming that the parabolic approximation is valid for surface geome-
tries, it can be shown that traveltimes are aligned along an apex-
shifted paraboloid in the (x, y) domain. Therefore, the computational
cost of themethod increases significantly because two extra parameters
are required in the summations.

5. Conclusions

Wepresented an algorithm that tackles two of themain problems in
microseismic downhole data processing: (1) automatic signal detection
and (2) data denoising. The methodology is based on an apex-shifted
parabolic Radon transform. The algorithm was derived using the con-
stant velocity model but it is clear that parabolic approximations can
also be used in situations where the velocity model is not constant.
The parabolic parameter q is a simple curvature parameter and should
not be used to estimate velocity information.

The algorithm can be divided into two steps. In the first step, themi-
croseismic arrivals are automatically detected based on the low resolu-
tion Radon coefficients of the normalized root mean square envelope of
the 3C data. The second step is devised to denoise the data via an adap-
tive filtering technique. Once an event was detected, the information
given by the aforementioned Radon coefficients is exploited in two
different ways. First, to restrict the Radon domain and focus on the
microseismic signal energies. Secondly, to precondition the Radon
synthesis of each data component. The representation of the data
components for the denoising step is posed as an inverse problem and
solved by the conjugate gradients method. The synthesized Radon
coefficients for each data component are used to transform back to the
data domain thus obtaining a denoised version of the input data.

The computational cost of the Radon transforms is critically reduced
by restricting the number of parabolas that are expected to arise
based on moveout considerations, and also by the Radon domain
restriction for the denoising step. Therefore, the method is computa-
tional efficient and could be used to process microseismic data in real
time.

The results using synthetic data examples show that the detection
is triggered by the phase with higher energy (the S–wave in our
examples). In addition, the proposed strategy inverts the microseismic
signalwaveformsproperly despite of the difficulties that entail the com-
plicated radiation pattern. The discrepancies on the amplitudes are not
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considerable, nonetheless some low-amplitude side-lobes can be
missed. The test over a noisy synthetic dataset demonstrates that the
algorithm significantly enhanced the S/N of the input data for both
the P– and the S–wave arrivals. Regarding the field data examples, the
method succeeded in detecting the arrivals automatically for both the
good and the poor S/N cases. The denoised version of the good S/N
dataset exhibits signal arrivals which are verywell isolated and cleaned.
For the example with poor S/N, those traces with visually distinguish-
able arrivals were properly denoised. However, for seismograms with
poor S/N, the inversion tends to retain the noise. Synthetic data tests
show that one should rely on these denoised traces. In any case, for
very noisy data, an expert analyst can simply isolate the part of the
signal were the microseismic was detected.

We believe that this method represents a very useful tool to be
applied in standard downhole microseismic data processing. In general,
the method is very robust to detect the events automatically, and
contributes to significantly enhance the data quality for further data
processing.
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Appendix A. The validity of the parabolic approximation

In this appendix we demonstrate the validity of the parabolic Radon
transform approximation in the context of microseismic event detec-
tion and denoising. In addition, we show the discrepancies that can
arise when adopting this approximation instead of the expected
hyperbolic model. In this sense, the parabola that best approximates
the true hyperbolic travel time is also the parabola that maximizes the
energy of the parabolic Radon transform. Therefore, parameters (τ, q)
represent the “effective” intercept and curvature coefficients that best
approximate a waveform with hyperbolic travel-time. To begin with,
consider the following approximation:

τ þ q z−zsð Þ2 ≈ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xsð Þ2
v2

þ z−zsð Þ2
v2

s
: ðA:1Þ

For an N-receivers vertical array with coordinates (x, zj), j=1,…, N,
we can write Eq. (A.1) in matrix notation

Aζ ¼ Y; ðA:2Þ
Fig. A.13. Parabolic approximation analysis. (a) Typical geometry in downhole acquisition proje
the rms error between the actual and the approximated travel-times. (b) rms error curves for th
for the parabolic approximation for the two selected sources.
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The parameters (τ, q) that best satisfy Eq. (A.2) according to the
least-squares criterion are given by:

ζ ¼ A⊤A
� �−1

A⊤Y: ðA:3Þ
In Fig. A.13a we show a typical geometry for this problem. The

velocity model is constant with v = 2500 m/s. The dots represent
potential source locations. Their sizes are proportional to the rms error
between the hyperbolic travel-times and the parabolic travel-times
computed using the effective parameters derived from Eq. (A.3). It
is clear that the error increases as the source moves away from the
receiver array in the vertical coordinate, and/or approaches the receiver
array in the horizontal coordinate. Nonetheless, the errors are relative-
ly small, as shown in Fig. A.13b. To further analyze the validity of the
approximation, we selected two sources: one in the center of the
analyzed positions, and the other in the worst situation regarding
the errors generated by the approximation. The selected sources
and their corresponding rms errors are indicated in Fig. A.13a and
b, respectively. The actual hyperbolic travel-times and those obtained
by the parabolic approximations after solving Eq. (A.3) are shown in
Fig. A.13c. Notice that the approximation is suitable for these geometries,
for one can find a pair (τ, q) that fits the curve very accurately. Therefore,
the small discrepancies observed in Fig. A.13c should not represent a
major concern given the implicit errors introduced by the constant
velocity assumption. Nevertheless, it is worth mentioning that receiver
arrays with larger apertures will produce larger errors. In such cases,
one should perform an rms-analysis similar to the one carried out in
this appendix in order to validate the hyperbolic assumption before
applying the detection/denoising algorithm.

Appendix B. Restriction of parabolic paths to increase the computational
efficiency of the method

We are approximating the hyperbolic arrivals given by Eq. (1) by
the parabolas given by Eq. (3). The computational cost of the Radon
transform is mainly determined by the sums in Eq. (6). Microseismic
arrivals are not expected to be horizontally aligned along the records.
cts. The black dots represent possible source locations. The size of the dot is proportional to
e different source depths in (a). (c) Hyperbolic arrival times and their corresponding times



Fig. B.14. (a) Region for the allowed parabolas defined by theminimumandmaximummoveouts. (b) Valid parabolas for the Radon operators. The bigger dots depict the valid (τ, q) pairs.
The smaller dots depict the (τ, q) pairs that are rejected and not considered in the Radon transform operators.
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In addition, the maximum moveout between any pair of receivers
should also be bounded. We use this idea to restrict the number of
(q, zs) pairs involved in the Radon operators. Given the known receivers
locations, we fix the minimum and maximum expected moveouts for
the signal arrivals. Using Eq. (3), this limit values define a region in
the (t, z) record domain, as shown in Fig. B.14a. Each pair (q, zs) that
generates a parabola outside this region is not taken into account for
the Radon operators. By these means, we significantly reduce the
number of calculations and increase the efficiency of the algorithm
(see Fig. B.14b). Moreover, the parabolas restriction also contributes to
diminish the risk of stacking over false events.
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