
GEOPHYSICS, VOL. 68, NO. 4 (JULY-AUGUST 2003); P. 1417–1422, 6 FIGS., 1 TABLE.
10.1190/1.1598135

Estimating the distribution of primary reflection coefficients

Danilo R. Velis∗

ABSTRACT

The distribution of primary reflection coefficients can
be estimated by means of the maximum entropy method,
giving rise to smooth nonparametric functions which are
consistent with the data. Instead of using classical mo-
ments (e.g. skewness and kurtosis) to constraint the max-
imization, nonconventional sample statistics help to im-
prove the quality of the estimates. Results using real log
data from various wells located in the Neuquen Basin
(Argentina) show the effectiveness of the method to es-
timate both robust and consistent distributions that may
be used to simulate realistic sequences.

INTRODUCTION

Estimating the probability density function (pdf) of primary
reflection coefficients is important for the testing and develop-
ment of new seismic processing algorithms. A realistic quanti-
tative understanding of the underlying process would be useful
for deepening our knowledge about the nature of the statistical
properties of seismic reflection sequences, and for enhancing
the reliability and accuracy of deconvolution operators (Saggaf
and Robinson, 2000).

Some authors in the geophysical community focus on esti-
mating the pdf by fitting the sample data to a predefined model
(Painter et al., 1995; Walden and Hosken, 1986). These strate-
gies belong to the class of parametric methods, because a finite
set of control parameters are fitted to the data. The method
of moments and the maximum likelihood (ML) method, for
example, belong to this group. Sometimes, a predefined pdf
poorly describes a complicated physical phenomenon such
as the deposition of sedimentary layers and lithologic units
through time. Alternatively, nonparametric methods do not
assume any pdf form. The histogram, perhaps the simplest
method of this group, has been used as an auxiliary tool in the
analysis of the distribution and spectral properties of seismic
log data (Todoeschuck et al., 1990; Painter et al., 1995; Jones
and Holliger, 1997). As is well known, the histogram presents
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some drawbacks: the results depend on the bin size and the
origin of the bins. In addition, the resulting pdf might not be
smooth, especially for short sequences.

The purpose of this work is to emphasize that for further
studies of seismic log data, alternative nonparametric methods
that produce smooth pdfs are important. Also, it is emphasized
that the use of nonconventional statistics which measure dis-
tribution shape give results which are more robust and consis-
tent than those using standard measures such as conventional
skewness and kurtosis (Ulrych et al., 2000; Velis, 2000). In par-
ticular, L-moments and certain skewness and kurtosis indices
(which I call S-measures) are combined with the maximum en-
tropy (MaxEnt) method (Jaynes, 1957; Gouveia et al., 1996)
to obtain the least informative pdf which is consistent with the
available information. That is, we start off with no reason to
prefer any pdf over any other and, being as conservative as pos-
sible, we pick the one that satisfies some constraints. Whether
or not the underlying process corresponds to a specific family
of known pdfs (e.g., a generalized Gaussian or a mixture of
Laplace distributions) is beyond the scope of this work.

SHAPE INDICES

Quantifying the shape of a distribution is important in data
analysis. Reservoir and sedimentary rock characterization, well
log studies, and various related modeling, inversion, and pro-
cessing techniques constitute a few examples of earth sciences
applications where quantifying the statistical properties of the
media is important. In this context, the shape of the distribution
of the process at hand, plays a central role for further investi-
gations as well as in the testing and designing of new process-
ing algorithms (e.g., Walden, 1993; Lancaster and Whitcombe,
2000; Saggaf and Robinson, 2000).

Classical skewness and kurtosis are two of the main indices
that characterize shape and are included in most commercial
statistical packages. Skewness is associated with symmetry (or
lack of symmetry), and kurtosis is usually associated with tail
heaviness, pdf peakedness, bimodality, or any combination
of the three concepts. Classical skewness and kurtosis are
higher order moments which are difficult to estimate when
sample size is small because they are too sensitive to moderate

1417



1418 Velis

fluctuations in the tail of the distribution (where outliers may
be present). This is the main motivation for developing new
skewness and kurtosis measures, such as L-moments and
S-measures, which are more robust, less biased, and more
consistent for small (say n< 1000) sample sizes (Hosking,
1990; Seier, 1998; Ulrych et al., 2000). As in the case of conven-
tional moments, L-moments, which are linear combination of
order statistics, are defined for increasing orders. S-measures
are shape indices devised to measure skewness and kurtosis
only.

In a practical context, given the sequence of primary reflec-
tion coefficients {r1, . . . , rn} with mean r̄ and variance s̄2, con-
ventional normalized skewness and kurtosis (third- and fourth-
order moments) are estimated using average values:

√
β1 = 1

n

n∑
i=1

(ri − r̄ )3

s̄3
and β2 = 1

n

n∑
i=1

(ri − r̄ )4

s̄4
. (1)

Hosking (1990) has shown that the first four L-moments are
`1= γ0, `2= 2γ1−γ0, `3= 6γ2−5γ1+γ0, and `4= 20γ3−30γ2+
12γ1−γ0, respectively, where γ j may be estimated by means of

γ̂ j = 1
n

n∑
i−1

(i − 1)(i − 2) · · · (i − j )
(n− 1)(n− 2) · · · (n− j )

ri , (2)

FIG. 1. Estimated skewness (
√
β1) versus kurtosis (β2), L-skewness (τ1) versus L-kurtosis (τ2), and S-skewness (θ1) versus S-kurtosis

(θ2), corresponding to 500 samples of size n= 50 (top row) and n= 250 (bottom row). All samples are drawn from a Laplace
distribution without outlier (red dots) and with an outlier at 1.75 (blue dots).

provided the sample has been previously ordered. Akin to the
definition of conventional normalized moments,

τ1 = `3

`2
and τ2 = `4

`2
(3)

are statistics related to the skewness and kurtosis of the pdf,
usually called L-skewness and L-kurtosis.

Seier (1998) proposed a family of skewness and kurtosis mea-
sures of the form E[g( f (Z))], where E[·] stands for expecta-
tion, g is a linear function, f is an odd or even continuous
function, and Z is the standardized variable. Some common
skewness and kurtosis measures are identified as members of
this family, such as

√
β1 = E[Z3] and β2 = E[Z4]. Two other

interesting members, which I call S-skewness and S-kurtosis
for convenience, are θ1 = E[a1 Z|Z|b1 ] and θ2 = E[a2b

−|Z|
2 ], re-

spectively. Here a1, b1, a2, and b2 are constants that I choose
to be a1= 2, b1= 0.5, a2= 5.7344, and b2= e (a2 = 5.7344 is to
honor θ2= 3 for a normal distribution).

In practice, θ1 and θ2 are estimated using

θ1= 2
n

n∑
i=1

(ri − r̄ )|ri − r̄ |1/2
s̄3/2

and θ2 = a2

n

n∑
i=1

e
− |ri−r̄ |

s̄ .

(4)
Figure 1 depicts skewness versus kurtosis as estimated us-

ing equations (1), (3), and (4) for 500 independent samples
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(n= 50 and n= 250) drawn from the Laplace distribution
p(r )= 1

2η exp− |r −µ|/η with mean µ= 0.0 and scale η= 8.0.
The high correlation between the conventional moments re-
veals they are rather correlated measures. As expected, the
variability of all the indices decreases with sample size, but not
the bias under the presence of an outlier at 1.75. The bias is very
high for the C-moments, even for n= 250. In these simulations,
the Laplace distribution has been selected because primary re-
flection coefficients usually exhibit a Laplace-like distribution
(Walden and Hosken, 1986).

MAXIMUM ENTROPY METHOD

Let the actual pdf, p(r ), be discretized and represented by
the finite sequence {pi }, i = 1, . . . ,m. Here, it is assumed that p
has approximate finite support; that is, p(r )' 0 for r 6∈ [a, b],
a and b being the minimum and maximum r of a given sample.
A very useful method for conservatively assigning probabili-
ties consists of maximizing the entropy, H(p)=−∑i pi log pi ,
subject to constraints on its moments (Jaynes, 1957). The avail-
able information is given by the natural constraint

∑
i pi = 1,

and the k moment constraints
∑

i h j (r i )pi = µ̂ j , j = 1, . . . , k,
where hj (r i )= r j

i and µ̂ j is the j th-order moment, which is es-
timated from the data and introduced into the optimization
problem through Lagrange multipliers. By replacing hj (r i ) by
g( f (ri )) for j = 3, 4 only, one can use the same algorithm to set
S-skewness and S-kurtosis constraints instead of the classical
indices.

The solution of the described constrained optimization prob-
lem leads to

pi = e
−λ0−

∑k
j=1 λ j h j (ri )

, i = 1, . . . ,m (5)

where λ j ( j = 0, . . . , k) are Lagrange multipliers, which are ob-
tained by solving a set of k + 1 nonlinear equations. These
equations come from replacing the solution [equation (5)] into
each of the k+ 1 constraints. For k= 1 and k= 2, the solutions
are the uniform and normal distributions.

L-moments are defined in terms of the cumulative distri-
bution, P(r ), rather than in terms of p(r ) (Hosking, 1990),
because

γ j =
∫ 1

0
r (P)P j d P =

∫ b

a
r P j (r )p(r )dr '

∑
i

r i P j
i pi .

(6)

For this reason, constraints using L-moments cannot be
easily incorporated into the optimization problem through
Lagrange multipliers. Rather, the problem is transformed into
an unconstrained optimization problem by defining the cost
function

J = −H + α
(∑

i

pi − 1
)2

+ α
∑

j

(` j − ˆ̀ j )2, (7)

where α is a constant (Ulrych et al., 2000). J is then minimized
with respect to the unknown distribution using a multidimen-
sional minimization algorithm.

EXAMPLES

The examples are based on density and sonic logs taken
from various wells located in the Neuquen Basin (Estancia
Vieja, Rı́o Negro Province, Argentina). The reflectivities cor-
responding to wells EV11, EV13, and EV17 are shown in

Figure 2. The number of measurements (length of the sample
vectors) range from 8400 to 11 700, with a sampling depth in-
terval of 0.2 m. Reflection coefficients are calculated, as usual,
with (Ii+1 − Ii )/(Ii+1+ Ii ), where Ii = ρi vi is the impedance at
the i th layer with density ρi and velocity vi .

MaxEnt estimates for various sample sizes, using C-
moments, L-moments, and S-measures constraints, were com-
puted as described in the previous section. In all cases, I set
m= 151 and k= 4. In the S-measures case, mean and vari-
ance were used as constraints together with θ1 and θ2. For

FIG. 2. Reflectivity sequences for wells EV11, EV13, and
EV17. Sampling depth interval equals 0.2 m.
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comparison, all examples show the pdf derived using a kernel
approach, specifically the Epanechnikov kernel (Silverman,
1986), as well as the histogram constructed using centered bins
of widths 0.005 (for n= 100 and 1000), and 0.0025 (for the com-
plete sample vector). For a meaningful comparison, n values
were randomly selected from the complete sample vector.

Results for well EV11 are shown in Figure 3. Assuming
that the histogram constructed with n= 11760 (complete sam-

FIG. 3. Pdf estimates from well EV11 using (a) n= 100, (b) n=
1000, and (c) n= 11760 (complete sample vector) measure-
ments. C, L, S, K, and H stand for C-moments, L-moments,
S-measures, kernel method, and histogram, respectively. As-
suming the histogram in (c) represents the closest approxi-
mation to the true distribution, the S-measures–derived pdf
appears to be the best estimate, even for n as small as 100.

ple vector) is the closest approximation to the true distribu-
tion, it is clear that the central peak of the distribution is best
resolved by means of S-measures constraints, even for n as
small as 100. Note also that C-moments constraints and, to a
lesser extent, L-moments constraints, tend to underestimate
the central portion of the pdf. A possible explanation is that
higher order C-moments, and in particular classical kurtosis,
focus on the tails of the distribution rather than on its peak.
This was also observed in synthetic simulations using Laplace
pdfs (Ulrych et al., 2000), suggesting that S-measures and
L-moments constraints are more appropriate for estimating
the pdf of reflection coefficients than C-moments constraints,
especially for small values of n. Figure 4 illustrates the results
for well EV13. By inspecting the figure, the same conclusions
can be drawn for this well as for well EV11. Though not shown,
the estimates for other wells exhibit a similar behavior.

Clearly, the same pdf cannot represent the complete reflec-
tivity sequence, unless it is purely stationary. Figure 5 shows
the estimated pdfs from well EV17 corresponding to eight
nonoverlapping windows (n ranging from 500 to 1700) selected
so as to avoid nonstationary effects, together with the estimates
using the complete sample vector (n= 8400). The selected win-
dows are marked in Figure 6. The differences among the pdfs
reveal (1) nonstationarity effects and/or (2) sensitivity to short
data sequences and outliers. Reducing the consequences of the
second issue (by using robust statistical measures) is important
for obtaining reliable results. In the example, the L-moments
and S-measures derived pdfs appear to show more consistency,
analysis window to analysis windows, than the C-moments de-
rived ones. Note that four (out of eight) pdfs are very similar
in each of Figures 5b and 5c (windows 3, 8, 4, and 2). On the
other hand, this behavior is not observed for the C-moments
case.

Finally, Figure 6 illustrates various simulated reflectivities
using the MaxEnt estimates from well EV17. Here, the sim-
ulated reflectivities were obtained via the rejection method
(Press et al., 1992) by concatenating the samples drawn from
the eight individual estimates in Figure 5. A more com-
plete strategy for generating realistic reflection sequences can
be easily devised by combining these simulated data with
the scheme proposed by Walden (1993), who incorporates
ARMA (1,1) processes to model the spectral structure of the
sequences.

To quantify the closeness between the actual and the simu-
lated distributions, some statistical measures can be computed
based on the available data. A commonly used measure is given
by the greatest distance, D, between the two cumulative distri-
bution functions [the Kolmogorov-Smirnov (K-S) test]. It turns
out that D is too sensitive around the median, but Kuiper’s
statistic, a variant of the K-S test, is not. Kuiper’s statistic (Press
et al., 1992) guarantees equal sensitivity at all values of the ran-
dom variable, and are given by

V = D+ + D− = max
a≤r≤b

[P̃n(r )− P̂n(r )]

+max
a≤r≤b

[P̂n(r )− P̃n(r )], (8)

where P̃n(r ) and P̂n(r ) are the estimated cumulative distribu-
tion functions corresponding to the actual and the simulated
samples, respectively. These estimates are easily constructed
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using step-functions that rise 1/n at each sample value.
Table 1 shows V corresponding to the eight windows in
Figure 6. The results reveal that V is similar in both the
L-moments and S-measures cases for all windows. On the other
hand, V is larger by a factor of about two to three in the
C-moments case, except for window 5, where all perform well.

FIG. 4. Pdf estimates from well EV13 using (a) n= 100, (b) n=
1000, and (c) n= 8900 (complete sample vector) measure-
ments. C, L, S, K, and H stand for C-moments, L-moments,
S-measures, kernel method, and histogram, respectively. As-
suming the histogram in (c) represents the closest approxi-
mation to the true distribution, the S-measures derived pdf
appears to be the best estimate, even for n as small as 100.

CONCLUSIONS

The derived MaxEnt pdfs are both smooth and consis-
tent with the data. The use of robust nonconventional statis-
tics (L-moments and S-measures) has helped to improve the

FIG. 5. Pdf estimates from well EV17 (solid line) correspond-
ing to the eight nonoverlapping windows marked in Figure 6
(n ranging from 500 to 1700). (a) C-moments (b) L-moments,
and (c) S-measures. The estimates with n= 8400 (complete
sample vector) are also shown for comparison (dashed line).
The L-moments and S-measures derived pdfs appear to show
more consistency, analysis window to analysis windows, than
the C-moments derived ones. See text for details.
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FIG. 6. Actual and simulated reflectivity sequences using the
estimates in Figure 5 which correspond to the eight marked
nonoverlapping windows (well EV17). Except for window 5,
the simulations based on L-moments and S-measures cap-
ture best the statistical characteristics of the true sequence,
as judged by Kuiper’s statistic V shown in Table 1.

accuracy of the results. The obtained pdfs might then be used
to analyze the nature of the underlying process, or to define
whether the pdf belongs to a certain family of known distribu-
tions. Also, the pdf can be used to simulate realistic reflectivity
sequences exhibiting the statistical properties of the original
data.

Table 1. Kuiper’s statistic for the eight windows in well EV17.

Window C L S

1 0.233 0.078 0.071
2 0.174 0.068 0.066
3 0.108 0.060 0.068
4 0.172 0.066 0.070
5 0.088 0.062 0.051
6 0.154 0.076 0.088
7 0.184 0.061 0.067
8 0.133 0.074 0.063
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