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Abstract

A procedure for the inversion of reflection data (zero offset section) is presented. The

strategy is based on the generation of a 2-D Markov Random Field (MRF) with a certain

spatial continuity that is appropriate to represent the underlying velocity model. The MRF,

which is generated using the Gibbs’ sampler, is forced to fit the data and to satisfy a set of

well constraints during its (iterative) generation process. The spatial continuity of the MRF

is implemented by defining a neighborhood system with associated potentials that favor the

formation of regions with similar velocity values. Thus, the resulting MRF exhibits spatial

continuity, fits the data and honors the well constraints. The algorithm is specially suited for

obtaining high resolution velocity images dominated by horizontal layers or other constant

velocity blocks. Moderate dipping layers are also tolerated. We tested the algorithm using

various velocity models, including the hard Marmousi model. The results show that realistic

high resolution blocky images can be recovered accurately. Since the generation of a MRF is

a stochastic process, the uncertainty of the estimated models can be analyzed by performing

several realizations.
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1 Introduction

The estimation of the earth model from measured reflection data represents a fundamental problem

in seismic exploration. This inverse problem is usually non-unique because there are many models

that fit the data equally well. Often, the non-uniqueness comes from the fact that the data is finite

(and inaccurate) but the actual model space that represents the earth subsurface as a continuum is

not. Fortunately, the non-uniqueness may be alleviated by selecting an appropriate parameteriza-

tion so that the model space dimension is reduced significantly. Also it is possible to regularize the

inversion within the numerical algorithm itself to guide the solution towards models with certain

desired properties (see for example Tarantola (1997)). These regularization strategies are devised

to discard implausible models and to select, among all plausible models that fit the data, those that

are more likely to be correct. For this task it is usually necessary to assume certain a prior infor-

mation that help us to impose within the mathematical framework, what type of model we would

like to obtain (a smooth model, a layered model, etc.). The selected a prior information plays a key

role in the solution of the inverse problem and constitutes the basic means of regularization.

The use of constraints contribute to reduce the non-uniqueness, too. If certain parameters are

known a priori, these parameters may be fixed throughout the inversion process. Actually, this is

a particular type of regularization. In the present work we use velocity constraints obtained from

wells. The final model is constrained to honor the well data. In addition we regularize the inversion

(in between wells) by modeling the velocity field via a discrete 2–D Markov Random Field (MRF)

which exhibits a certain spatial continuity in the form of blocks that represent layers or other

constant velocity regions (this constitutes the prior). For simplicity, the number of possible velocity

values is fixed within a given range. This type of strategy has already been used for reflection

tomography (Carrion and Pulleda, 1995; Carrion et al., 1997), where high resolution “blocky”

models are obtained using Gibbs’ sampling (implemented through Simulated Annealing). Gibbs’

sampling has also been used for the inversion of marine reflection data (Sen and Stoffa, 1996),
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where a 1–D layered model is derived using the so called heat bath algorithm with uniform prior.

In this paper we propose an algorithm based on the Gibbs’ sampler to obtain 2–D “blocky”

velocity images that satisfy the post-stack reflection data (zero-offset section). The solution is

guided by the use of both well constraints and bounding constraints for the velocity values. The

key relies in the selection of the appropriate potentials associated with the Gibbs’ distribution to

favor a desired spatial continuity to characterize the subsurface model in between the wells. We

divide the earth into rectangular cells and assume that the velocity within each cell is constant. The

size of the cells is small enough so that the discretization does not affect the final solution. Since

the observations (reflection data) are naturally inaccurate, the final solution is forced to reproduce

the data within a given threshold (expected misfit). Various numerical examples demonstrate the

use of the Gibbs’ sampler for the inversion of reflection data that yield high resolution “blocky”

images of the subsurface velocity field. We test the algorithm in a simple 100× 50 layered model,

and in the complex 384 × 122 hard Marmousi model (Versteeg, 1994). Despite the fact that the

procedure is rather demanding in terms of computational cost, the results are encouraging because

complex realistic models can be recovered quite accurately.

2 Theory

The problem consists on finding the velocity model X that fits the data (zero offset section) and

satisfies a set of constraints given by velocity values measured at a series of wells. Models with

spatial continuity (specially lateral) are preferred. This is achieved by generating a Markov Ran-

dom Field (MRF) with specified statistical properties.

The model may be assumed to be a MRF defined on a 2-D discrete regular lattice. In a 2-D

MRF the full conditional probability

P (Xs = xs|XS\s = xS\s) (1)
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where Xs is the velocity value at site s, s ∈ S, depends only on the neighborhood of s, Ns. That is

P (Xs = xs|XS\s = xS\s) = P (Xs = xs|Xr = xr, r 6= s). (2)

where r ∈ Ns. Usually, the neighborhood is defined in terms of cliques c. A clique c consists on

any set of sites such that if si, sj ∈ c, then sj is in the neighborhood of si, sj ∈ Nsi . Also, si is in

the neighborhood of sj, si ∈ Nsj .

The Hammersley-Clifford theorem states that the probability of a particular configuration obeys

a Gibbs’ distribution (Besag, 1974):

P (X) =
1

Z
exp

[
− 1

T
U(X)

]
, (3)

where Z is a normalizing constant (partition function), T is a constant (temperature) and U is the

energy function (typically defined in the neighborhood Ns). The importance of the Hammersley-

Clifford theorem resides in the fact that the probability distribution P (X) of any MRF is uniquely

determined by the conditional probabilities. In other words, one can draw models from the Gibbs’

distribution by sampling the conditional distributions. This is carried out by means of the Gibbs’

sampler (Geman and Geman, 1984).

2.1 The Gibbs’ sampler

The Gibbs’ sampler is a technique for generating random variables from a (marginal) distribution

indirectly (Geman and Geman, 1984; Casella and George, 1992). It consists on visiting all sites s,

one site at a time, in a predefined order (any order is valid). Every time a site is visited, a random

value is drawn from the conditional probability relative to the neighboring values (conditionals are

much easier to calculate than marginals, specially in high dimensional spaces):

4



P (Xs = xs|XXr = xr, r 6= s) =
1

Zs
exp

[
− 1

T
U(Xs)

]
. (4)

Once all sites are visited, a sweep has been concluded. This process (sweep) is repeated a certain

number of times, so that we end up with a Gibbs’ sequence of random variables for every site

s ∈ S and a MRF sequence X1, X2, · · · , Xk. It turns out that the distribution of Xk converges to

P (X) as k →∞. When k is large enough, Xk = xk is a sample from P (X).

Usually

U(Xs) =
∑

c∈C
Vc(Xs), (5)

where Vc is the potential of clique c, and C is the set of all the cliques in the neighborhood N .

The value of Vc depends on the local characteristics of the clique c; that is, its value depends only

on those velocity values xs for which s ∈ C and it is selected so as to favor a desired behavior

of the model (for example, in image de-noising and restoration, Vc will be such that images with

regions of the same color are favored). So, the clique potentials describe the prior probability of a

particular realization of the elements of the clique.

The partition function Zs in (4) is given by

Zs =
∑

xs∈Γ

exp

[
− 1

T

∑

c∈C
Vc(Xs)

]
. (6)

where Γ is the set of all possible values of the random variable Xs (e.g. pixel intensity in an image

restoration problem). Temperature T controls the degree of “peaking” of the distribution. The

smaller the T , the sharper the distribution. In general we set

T =
T0

log(1 + k)
, (7)

where T0 is a constant and k stands for iteration (sweep).
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2.2 Spatial continuity

To favor spatial continuity in the generation of models we chose neighborhood systems of first,

second and third order, as depicted in Figure 1. The systems are conveniently adjusted at the

boundaries.

Let s = (is, js) be the current site with velocity xs, and let r = (ir, jr) be a neighbor site with

velocity xr. Also, let δx = |xr − xs|. We define the associated potentials to be

Vc = α
δxp

δxp + ε
. (8)

where α, ε and p are predefined (positive) constants. Usually, p = 2 and ε is small compared to

δxpmax, where δxmax is the estimated maximum velocity difference. Clearly, when the neighbor

velocity equals the current velocity (i.e. xr = xs), Vc → 0, the corresponding term in the expo-

nential (4) gets large and the probability increases. On the contrary, velocity values which do not

contribute to the spatial continuity (i.e. xr 6= xs) are assigned low probabilities, since Vc → α for

large δx.

In the inversion of the reflection data, we also assign higher probabilities to those velocity

values that contribute to spatial continuity in the horizontal direction (denoted by index j), relative

to the spatial continuity in depth/time (denoted by index i). This is carried out by redefining (8):

Vc =





α δxp

δxp+ε
ir = is

ρα δxp

δxp+ε
ir 6= is,

(9)

with 0 ≤ ρ ≤ 1. For convenience we set α = (1/Θ)/(2 + 4ρ), where Θ is the order of the selected

neighborhood system. This ensures that 0 ≤ U(xs) ≤ 1.

Figure 2 depicts the energy function U(xs) defined in (5), which is the sum of the six clique

potentials in a first order neighborhood system (Θ = 1), with ε = 0.1 and 0.5, p = 2, and ρ = 1.0

and 0.2. Only those values of xs which exhibit a strong similarity with the neighbor values xr will
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be assigned low energy values (i.e. large probability). The neighbor values are shown in the same

figure (left panel). For xs = 2.0, the spatial continuity is largest, both for ρ = 1.0 and 0.2. For

xs = 5.0 the spatial continuity is assigned lower energy (even lower for ρ = 0.2, since this value is

not at the same depth/time is). A maximum energy value of about 1.0 is assigned to those values

for which there is no similarity with the neighbor values.

2.3 Misfit

Another important issue regarding the inversion of the reflection data is the misfit. Reflection data

should be fitted within a given tolerance so that every time a site is visited, those velocity values

which lead to a decrease in the misfit function are assigned higher probabilities. We define the new

conditional probability

P (Xs = xs|Xr = xr, r 6= s) =
1

Zs
exp

(
− 1

T
[βjsU(Xs) + (1− βjs)Es]

)
, (10)

where Es is the misfit (or error) function, and βjs is a constant used to balance the weight between

spatial continuity and misfit at every offset. Usually 0 ≤ βjs ≤ 1 so that low spatial continuity and

large errors are discouraged. The partition function Zs is adjusted accordingly to take into account

this new term.

We define the misfit function as the normalized root mean square error

Es =

√√√√
∑N

i=1(yijs − y′ijs)2

∑N
i=1 y

2
ijs

, (11)

where yijs is the js-th trace obtained after convolving the reflectivity series derived from the ve-

locity column vector xijs and the known wavelet (data), and y ′ijs is the trace with the velocity at

depth/time is replaced by xs = xisjs . N is the trace length. Note that the only difference between

y and y′ comes from the fact that a single velocity value has been modified. As a consequence, the
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computation of the equation (11) can be simplified significantly (see Appendix).

2.4 Constraints and weighting factor

The inversion procedure honors any number of predefined well constraints by simply not changing

the corresponding velocities at the appropriate sites. Assuming the well constraints are given by

known velocity values at Nc offsets Jl, l = 1, · · · , Nc, during every sweep of the sites in the

rectangular lattice, whenever j = Jl, the velocity xij is kept constant. It is also possible not

to honor the well constraints exactly. In this case, one can set a range of variation around the

measured velocity values at these locations. In this work the constraints will be honored exactly.

The weighting factor βjs in equation (10) can be used to control how the well constraints are

involved in the process of adding spatial continuity to the MRF. It seems reasonable to select a

larger βjs for those offsets that are close to the known velocity values (which are honored at every

sweep). On the contrary, a strong spatial continuity is not assigned to those offset which are far

from the constraints because this may lead to the premature development of constant velocity re-

gions (local minima) that may delay convergence (the MRF is poorly constrained here). However,

the value of βjs at these offsets can be increased with the sweep number as the misfit decreases, so

that a strong spatial continuity is also obtained at convergence.

For this purpose we define the following weighting factor, valid in the vicinity of each con-

straint Jl:

βjs = β0
η

δjqs + η
,

Jl−1 + Jl
2

≤ js ≤
Jl + Jl+1

2
, l = 2, · · · , Nc − 1, (12)

where β0, a user defined constant, is the maximum weight, η is a positive constant which depends

on the sweep number only, δjs = |Jl − js| and q = 2. Clearly, when δjs is small, βjs → β0. For

offsets far from the constraint, δjqs becomes large compared to η and βjs is minimum. To control

the way βjs decreases in between two constraints, we define
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η = βm
(δmax/2)q

β0 − βm
, with βm = βa + (βb − βa)

k − 1

kb − 1
. (13)

Here δmax is the maximum distance between any two consecutive constraints or between J1 or JNc

and the left (j = 1) or right (j = M ) boundary of the model, that is

δmax = max {|Jl − Jl+1|, |J1 − 1|, |JNc −M |} , l = 1, · · ·Nc − 1 (14)

βa and βb are the desired minimum and maximum values for βjs = βm at the middle point corre-

sponding to δmax, and kb is the number of sweeps it takes βm to go from βa to βb.

Figure 3 shows a typical selection of the weighting factor βjs for three well constraints at offsets

J1 = 10, J2 = 40 and J3 = 90, respectively (the velocity model is defined in the range 1-100,

arbitrary units). In this example, β0 = 0.2, βa = β0/4 and βb = β0/2. At the first stages of the

MRF generation (first sweeps), a strong spatial continuity is forced around the well constraints.

Far from the well, the misfit term prevails. On the other hand, as the number of sweeps increases

(and the overall misfit decreases), the spatial continuity term becomes large for those offsets which

are not so close to the constraints, too. At these stages, one can assume that the misfit has already

been significantly reduced. This will become more evident in the Examples section.

3 Examples

In all the examples we describe the velocity model using a M ×N rectangular lattice with discrete

velocities in the range 1-10 (arbitrary units). HereM is the number of traces (columns) in the offset

direction, and N is the number of samples (rows) in the vertical direction. The data is the zero-

offset section (primary reflections only) obtained after convolving the derived reflectivity series

with a known Ricker wavelet. For simplicity, the reflection coefficients are calculated assuming a

constant density. Gaussian noise with SNR = 10 is added to the data.
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The initial velocity model used to start the iteration is set to uniform random values. The

inversion process stops after a maximum of number of sweeps or when the expected misfit is

reached. The expected misfit, χ, can be estimated easily by inspecting formula (11) at convergence.

We define the expected misfit as the mean rms error of all the traces:

χ2 =
1

M
E2
s =

1

M

M∑

j=1

∑N
i=1(yij − y′ij)2

∑N
i=1 y

2
ij

=
1

M

M∑

j=1

∑N
i=1 n

2
ij∑N

i=1 y
2
ij

' 1

SNR
, (15)

where nij is the added noise. For SNR = 10, χ ' 0.316. In all cases we set p = 2 and ε = 0.5

for the clique potentials in equation (9).

3.1 Layered model

Figure 4 (first two panels) shows a layered velocity model (Example 1) and the data, withM = 100

and N = 50. To evaluate the behavior of the algorithm under different number of constraints, the

inversion was repeated three times assuming that

a) the velocity was known at three wells located at offsets J1 = 10, J2 = 40 and J3 = 90;

b) the velocity was known at two wells located at offsets J1 = 10 and J2 = 90;

c) the velocity was unknown everywhere.

In all the cases we set T0 = 0.1, ρ = 0.2, β0 = 0.2, βa = 0.25, βb = 0.75 and kb = 1500. A

maximum of 3000 sweeps were performed, and the third order neighborhood system was used.

The results of the inversion for case (a) are shown in Figure 4 (rows 2 to 6). The figure shows

the evolution of the estimated velocity model for various sweeps along with the corresponding cal-

culated data and error images. The resulting misfit in each case are displayed in the figure. The true

model was recovered quite accurately after 781 sweeps, when the expected misfit was reached and

the iteration stopped. At about 500 sweeps, the recovered model is also very accurate. Note how
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the model is progressively recovered (as the number of sweeps increases) from the wells towards

regions less constrained. For sweep number 100, for example, the model is recovered only in the

neighborhood of the three wells. This behavior is controlled by the selection of the appropriate

parameters in equations (12) to (14). In this particular case, βjs is that shown in Figure 3.

In Example 1b and 1c, when the velocity is known at two locations for the 1b case and nowhere

for the 1c case, the results are shown in Figure 5. The final model and data after 3000 sweeps for

the two well constraints case are shown in the first row of the figure. Although the expected misfit

has not been reached, all details of the true model are recovered quite well. The results are not

so accurate in the unconstrained case (second row), where the main features of the model were

recovered but the final misfit was too large (0.351). After 3000 sweeps the solution does not

improve significantly.

3.2 Layered model with constant velocity block

Here we used exactly the same settings (constraints, parameters, etc.) than in Example 1. The

only difference resides in the model, where we have added a constant velocity block in the center

of the rectangular lattice, as depicted in Figure 6, row 1. The results for Examples 2a, 2b and 2c,

are shown in rows 2, 3 and 4, respectively. Example 2a yields the best results. In this case, the

expected misfit was reached after 939 sweeps, and the recovered model is very accurate, except at

the vertical boundaries of the block.

Row 3 of the same figure displays the results for the two well constraints case. The expected

misfit was not reached after 3000 sweeps. However, the main features of the true model were

recovered quite well, including the constant velocity block. Some zones with wrong velocity

values can be distinguished in the regions far away from the well constraints. The results are less

accurate, as expected, in the unconstrained case (row 4). The final solution (after 3000 sweeps)

clearly shows the layering and the constant velocity block, but there are many regions with wrong

velocity values.

11



3.3 Marmousi model

Now we test the algorithm with a more realistic model. For the test we selected the 2–D hard

Marmousi model (Versteeg, 1994), which is defined in a 384 × 122 rectangular lattice and is

displayed in Figure 7, first row. The hard Marmousi model exhibits many normal faults, reflectors,

steep dips and strong lateral and vertical velocity variations. For simplicity, we eliminated the first

two rows of the original model to get rid of the water layer. Also, we scaled and re-discretized

the velocity model so that we end up with a 384 × 120 grid with 10 velocity values in the range

1–10 (arbitrary units). Actually, this is the model which is shown in the first row of Figure 7.

The data (zero offset section) was generated by convolving a Ricker wavelet with the reflectivity

sequences derived from the velocity column vectors assuming constant density. Gaussian noise

with a signal-to-noise ratio of 10 was added to the data. Again, the expected misfit was 0.316.

Because of the different character of the velocity model (thinner layers, etc.), we selected a

different set of parameters for the inversion of the data. In particular we set T0 = 0.1, ρ = 0.1,

β0 = 0.1, βa = 0.25, βb = 0.75 and kb = 10000. A maximum of 10000 sweeps were performed,

and the second order neighborhood system was used. As for the constraints, we assumed we have

ten wells at offsets 10, 50, 90, · · · , 370. The results are shown in Figure 7. The final misfit after

10000 iterations was 0.385. The main features of the model were recovered quite well. Steep dip

velocity layers were not recovered as accurately as those which are essentially horizontal, specially

at the bottom of the model. Figure 8 shows the results when only five well constraints were used

(at locations 10, 100, 190, 280, and 370). The results are not as accurate as in the previous case,

but they are satisfactory, considering the complexity of the model. In this case, the final misfit after

10000 sweeps was 0.399.
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3.4 Uncertainty

It is possible to check the uncertainty of the estimated models by generating several MRFs using

different seeds. This was carried out for the examples 1a and 2a. The inversion was repeated using

20 different seeds with a maximum of 3000 sweeps. Figure 9 shows the convergence curves for

the 20 runs in the two models. Note that convergence is achieved in most runs: the average misfits

are 0.3147 ± 0.0002 and 0.3149 ± 0.0006 for the examples 1a and 2a respectively (the expected

misfit is 0.3162 in both cases). In general, the convergence in the layered model is faster than in

the model with the constant velocity block.

Figure 10 displays the average velocity models (and data) obtained after the 20 independent

runs, along with their standard deviations. As expected, the uncertainty is smaller around the

constraints. Larger uncertainties take place at isolated locations, specially in the second model.

In general, both models are recovered consistently, except for some minor artifacts at the vertical

boundaries of the block in the second model.

4 Summary and conclusions

The inversion of reflection data can be carried out by generating a MRF that favors certain spatial

continuity given by a set of potentials defined over a neighborhood system of cliques. This MRF,

which is generated using Gibbs’ sampling, is guided to honor the data and satisfies a set a well

constraints at every stage of the iterative process. Well constraints are important to improve the

convergence of the algorithm in a reasonable number of sweeps (iterations). The defined potentials

are specially suited for obtaining high resolution velocity images dominated by horizontal layers

or other constant velocity blocks. Moderate dipping layers are tolerated. The selection of an

appropriate scheme to progressively include the well constraints into the inversion is very important

to avoid the premature formation of constant velocity regions that may delay the convergence. This

strategy is used to control how the spatial continuity and the misfit terms are weighted.
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The procedure allows one to estimate the uncertainty of the inversion by generating several

MRFs using different seeds. The results in this regards show that the obtained velocity models

exhibit low variability except for some small regions which were poorly constrained.

In this work we selected first, second and third order neighborhood systems with associated

potentials that favor the generation of constant velocity regions which are essentially flat or mod-

erately deep (when ρ� 1). Though the neighborhood system and the associated potentials can be

adjusted for models with different spatial continuity behavior (for example selecting ρ = 1 would

favor both horizontal and vertical continuity), it is clear that alternative potentials could be easily

incorporated into the inversion procedure.

For simplicity we defined the models using 10 discrete values within a given range of arbitrary

units. A larger number of velocity values can be used at the expense of an increase in the compu-

tational cost. The computational cost is completely dominated by the calculation of the reflection

data and misfit. Though the replacement of a single velocity value at a given offset affects only

locally the trace at that offset and efficient formula have been derived to update the misfit accord-

ingly, about 80–90% of the computational cost of the whole inversion process is accounted by the

evaluation of the misfit term.
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A Appendix

Let

yi =
∑

k

hkri−k+1 (16)

be the seismic trace coefficients at offset js, where hi and ri are the corresponding seismic wavelet

and reflectivity coefficients. Assuming a constant density, the reflection coefficient is

ri = (xi − xi−1)/(xi + xi−1), i = 2, 3, · · · , (17)

with r1 = 0, where xi is the velocity at depth/time i. At any given stage of the inversion procedure,

let x′is = xis + δxis be the new velocity value at offset js and depth/time i = is. Then

r′i =





(xis − xis−1 + δxis)/(xis + xis−1 + δxis), i = is

(xis+1 − xis − δxis)/(xis+1 + xis + δxis), i = is + 1

ri. otherwise

(18)

is the new reflectivity sequence. The new trace is

y′i =
∑

k

hkr
′
i−k+1

= hi−is+1r
′
is + hi−isr

′
is+1 +

∑

k, k 6= i−is
k 6= i−is+1

hkri−k+1

= hi−is+1r
′
is + hi−isr

′
is+1 +

∑

k

hkri−k+1 − hi−is+1ris − hi−iSris+1

= yi + hi−is(r
′
is+1 − ris+1) + hi−is+1(r′is − ris)

= yi + hi−isγ1 + hi−is+1γ2

(19)
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where

γ1 =
−2δxisxis+1

(xis + xis+1)(xis + xis+1 + δxis)
(20)

γ2 =
2δxisxis−1

(xis + xis−1)(xis + xis−1 + δxis)
(21)

Note that the trace needs to be updated using equation (19) only for is ≤ i ≤ Lh + is, where Lh is

the wavelet length. This procedure reduces significantly the computational cost of evaluating the

misfit function.
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Figure 3: Weighting factor βjs for sweep number varying from 1 to kb. The maximum weight, β0,
is assigned to the offsets at the well constraint locations (marked with small arrows). In between
the constraints, the weight is smaller to avoid premature development of constant velocity regions
at the early stages of the MRF generation process.
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Figure 4: Example 1a: layered model. First row: true model and data. Rows 2 to 6: estimated
model, data and error images for various sweeps. The small arrows show the location of the
constraints.
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Figure 5: Examples 1b and 1c: layered model. Estimated model, data and error images after 3000
sweeps in the layered model with two well constraints (first row) and no well constraints (second
row). The true model and data are shown in Figure 4, first row.
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Figure 6: Example 2: layered model with constant velocity block. First row: true model and
data. Rows 2, 3 and 4: estimated model, data and error images for the three, two and none well
constraints cases, respectively.
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Figure 7: Example 3: hard Marmousi model. First row: true model and data. Second row: esti-
mated model and data after 10000 sweeps. Third row: model and data error images after 10000
sweeps. The small arrows show the location of the constraints.
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Figure 8: Example 3: hard Marmousi model. First row: estimated model and data after 10000
sweeps. Third row: model and data error images after 10000 sweeps. The small arrows show the
location of the constraints.



 0.25

 0.5

 0.75

 1

 0  1000  2000  3000
 0.25

 0.5

 0.75

 1

 0  1000  2000  3000
sweep numbersweep number

(a) (b)

av
er

ag
e

m
is

fit

av
er

ag
e

m
is

fit

Figure 9: Average data misfit versus sweep number for 20 independent runs: (a) layered model;
(b) layered model with a constant velocity block. The horizontal line shows the expected misfit,
which is equal to 0.316 in both cases. Three well constraints have been used.
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Figure 10: True (first row), average (second row) and standard deviation (third row) of the velocity
model and data obtained after 20 independent runs. (a) Layered model; (b) layered model with a
constant velocity block. The small arrows show the location of the constraints.


