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ABSTRACT

Sparse-spike deconvolution can be viewed as an inverse
problem where the locations and amplitudes of a number of
spikes �reflectivity� are estimated from noisy data �seismic
traces�. The main objective is to find the least number of
spikes that, when convolved with the available band-limited
seismic wavelet estimate, fit the data within a given tolerance
error �misfit�. The detection of the spikes’time lags is a highly
nonlinear optimization problem that can be solved using very
fast simulated annealing �SA�.Amplitudes are easily estimat-
ed using linear least squares at each SA iteration. At this
stage, quadratic regularization is used to stabilize the solu-
tion, to reduce its nonuniqueness, and to provide meaningful
reflectivity sequences, thus avoiding the need to constrain the
spikes’ time lags and/or amplitudes to force valid solutions.
Impedance constraints also can be included at this stage, pro-
viding the low frequencies required to recover the acoustic
impedance. One advantage of the proposed method over oth-
er sparse-spike deconvolution techniques is that the uncer-
tainty of the obtained solutions can be estimated stochastical-
ly. Further, errors in the phase of the wavelet estimate are tol-
erated, for an optimum constant-phase shift is obtained to cal-
ibrate the effective wavelet that is present in the data. Results
using synthetic data �including simulated data for the Mar-
mousi2 model� and field 3D data show that physically mean-
ingful high-resolution sparse-spike sections can be derived
from band-limited noisy data, even when the available wave-
let estimate is inaccurate.

INTRODUCTION

The deconvolution of seismic traces is one important digital sig-
al processing method in geophysical exploration. Once the earth
odel and the forward problem have been set mathematically �for

xample, using the convolutional model�, the deconvolution be-
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omes an inverse problem where the data are the seismic trace st and
he unknown is the reflectivity rt, as given by

st � wt � rt � nt, t � 1,2, . . . ,N , �1�

here wt is the seismic wavelet and nt is the additive noise. This
odel assumes that the earth structure can be represented adequately

y a set of planar layers of constant impedance. For the purpose of
his paper, I also assume the wavelet �or an estimate of the wavelet� is
nown within a constant-phase shift.

It is clear that because of the bandwidth limitation of the wavelet
and data� and because the data are finite and inaccurate, there exists
n infinite number of reflectivities that fit the data equally well. One
ay to solve this nonuniqueness is to pick, among all possible solu-

ions, those solutions that �1� fit the data, �2� satisfy a given set of
onstraints �if available�, and �3� are more likely to be correct. The
ast issue represents the key to most inverse problems. It is usually
ut into practice by assuming some prior information about the type
f solution one is interested in. In other words, prior information is
sed to discard implausible models.

Sparse-spike deconvolution assumes, as a prior, that the reflectiv-
ty is a sparse sequence of spikes. The main objective of sparse-spike
econvolution methods is to provide a significant increase in band-
idth content from band-limited seismic observations. This is espe-

ially important because the search for subtle hydrocarbons traps has
ecome a major task in today’s seismic exploration. Under the as-
umption of sparseness, the deconvolution problem involves �1� de-
ection of the spikes and �2� estimation of their amplitudes �Velis,
006�. Various methods use different search strategies to locate the
pikes and rely on the optimization of different cost functions to sat-
sfy a probabilistic model for the reflectivity �Kormylo and Mendel,
978; Kaaresen and Taxt, 1998�. Other methods proceed to optimize
ome norm that forces the solution to be sparse �Oldenburg et al.,
983; Debeye and van Riel, 1990; Sacchi et al., 1994; Wang et al.,
006�.

In this work, the objective is to find the locations and amplitudes
f the least number of spikes that, when convolved with the seismic
avelet, fit the data within a given tolerance error �misfit�. Optimum

mplitudes are obtained directly using linear least squares �given the
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R2 Velis
ocations�. On the other hand, the detection of the spikes, which rep-
esents a highly nonlinear optimization problem, is solved by very
ast simulated annealing �SA� �Ingber, 1989�. This avoids the subop-
imal results of other search strategies.

Vestergaard and Mosegaard �1991� address the problem of decon-
olution �through the inversion of poststack data� using sparse prior
nformation and a variant of SA �Nulton and Salamon, 1988; Moseg-
ard and Vestergaard, 1991�. In their method, numerical instabilities
n the linear least-squares stage are handled by introducing con-
traints in the spike locations; for example, two spikes cannot be
loser than a predetermined distance. This precludes the use of the
rocedure in geologic situations such as layer pinch outs and thin
eds. Another difficulty mentioned by the authors comes from the
act that the linear stage may lead to solutions with invalid ampli-
udes. Hence, the use of constrained linear optimization is suggested
o alleviate this problem, though it is not clearly explained how these
onstraints are included from a numerical point of view.

In contrast, the quadratic regularization used in this work yields
table and valid solutions without the need for explicitly constrain-
ng either the location or the amplitudes of the reflection coefficients.
urthermore, because the proposed trace-by-trace strategy provides
ood lateral continuity, the use of additional terms in the cost func-
ion is not required in Vestergaard and Mosegaard, 1991 �a weak lat-
ral smoothness constraint is utilized�. Once a single trace has been
rocessed, the next trace is deconvolved using the previous solution
s the initial model; thus, lateral continuity is obtained automat-
cally.

The proposed methodology allows for any number of impedance
onstraints to be easily incorporated into the optimization procedure
o further reduce the nonuniqueness of the solution and to improve
ts accuracy and consistency. As a by-product, the acoustic imped-
nce also is recovered if such geologic information is available at
ome locations and used as constraints for the deconvolution pro-
ess. Additionally, a strategy for handling wavelet inaccuracies is
roposed. Clearly, the success of the deconvolution process is par-
ially affected by the quality of the estimated wavelet used to decon-
olve the traces �Levy and Oldenburg, 1982�.

Errors in the phase could certainly diminish the results; thus, a
trategy for calibrating the wavelet estimate is important. Here, the
ptimum constant-phase shift is found so that the sparse-spike solu-
ion honors the data within a given tolerance for the selected set of
arameters �i.e., number of spikes, etc.�.As a result, the wavelet esti-
ate is calibrated to carry its phase to that of the effective wavelet

overning the data.
One advantage of the proposed deconvolution method is that it is

ossible to estimate the uncertainty of the inversion by performing
everal SA runs using different seeds. This procedure allows one to
xplore stochastically the model space and to obtain a family of ac-
eptable sparse-spike solutions that honor both data and constraints.
t the same time, using the average solution as the final solution �in-

tead of an individual realization�, the generation of spurious arti-
acts that may destroy lateral continuity is minimized. The method is
llustrated using various synthetically generated �including simulat-
d data for the Marmousi2 model� and field data examples. These ex-
mples show that the proposed deconvolution method is able to ac-
urately recover a useful high-resolution sparse reflectivity model
rom band-limited noisy data, even when the phase of the wavelet es-
imate contains errors.

One may argue that equation 1 together with the sparse-spike as-
umption is a rather simple model for an inverse method to rely on
Downloaded 12 Jul 2010 to 163.10.46.13. Redistribution subject to S
nd that more complex methods based on 2D or 3D modeling should
e used instead. However, practical inversion in the exploration
ommunity is still dominated by convolutional models, for the cost
f the forward problem step is a real petroleum exploration and pro-
uction concern. This is especially true for testing stochastic meth-
ds in a nonlinear optimization framework, where simple and com-
utationally efficient forward modeling is of paramount importance.

THEORY

Asparse reflectivity sequence can be represented by the following
odel:

rt � �
j�1

M

� j� t�� j
, �2�

here M, M�N, is the number of nonzero spikes of amplitudes � j

nd time lags � j, and � t is the delta function. Parameters � j and � j

re unknown.
Inserting equation 2 into equation 1 yields

st � �
j�1

M

� jwt�� j�1 � nt, t � 1,2, . . . ,N . �3�

n matrix form, the relationship is

A� � n � s , �4�

here A is an N�M matrix with elements Aij � wi�� j�1. This is a
et of N nonlinear equations with 2M unknowns that can be solved
y minimizing the squared error between the actual data �seismic
race� and the calculated data. For this purpose, I define the cost
unction as

Ja � �A� � s�2. �5�

For simplicity, in this work I assume that the noise �or an estimate
f the noise� is known; thus, the expected misfit can be calculated.
or normally distributed noise with mean zero and standard devia-

ion � , the expected misfit is

E �Ja� � N� 2. �6�

n actual computations, the misfit is calculated using J̃a � �Ja/N,
eaning that the expected misfit is E �J̃a� � � . Thus, any configura-

ion of M spikes with lags � j and amplitudes � j that satisfies J̃a ��
onors the data and represents a plausible solution. Because the prior
s represented by model 2, all solutions that fit the data are guaran-
eed to be sparse, provided M�N.

I minimize Ja with respect to the time lags �̂ j using very fast SA.
mplitudes �̂ j are estimated by linear least squares �given the lags�

t each SAiteration using

�Ja

� �̂
� 2AT�A�̂ � s� � 0, �7�

hich leads to

�̂ � �ATA��1ATs , �8�

here Aij � wi��̂ j�1. Because M is small in general, the computa-
ional cost associated with equation 8 is low.
EG license or copyright; see Terms of Use at http://segdl.org/
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Stochastic sparse-spike deconvolution R3
mpedance constraints

The importance of using low frequencies to correctly estimate
coustic impedance is well known �Oldenburg et al., 1983�. If we as-
ume that a set of K acoustic impedances Ii is available at different
ime levels Ti, we can use them as constraints in the deconvolution
pproach to recover the missing low-frequency content. For this pur-
ose, it is useful to use the logarithmic approximation that relates the
eflection coefficient with the impedance, which is valid for small �rt�
less than about 0.3�:

rt �
It � It�1

It � It�1
	

�It

2It
�

1

2
� log It. �9�

hen

�
j�1

Ti

rj 	
1

2
log

Ii

I0
� � i, i � 1,K , �10�

here I0 is the impedance at the time level T0 �e.g., the surface� and � i

re the impedance constraints at time levels Ti, the values which are
ssumed to be known. Finally, using the sparse-spike model 2 with
stimated lags �̂ j, I get

�
j�1

M

� juTi��̂ j
� � i, i � 1,K , �11�

here ut is the step function. In matrix form, the equation becomes

C� � �, �12�

here C is a K�M matrix with elements Cij � uTi��̂ j
and � is a

-length vector containing the constraints.
I can now write the cost function as

J � �A� � s�2 � 	�C� � ��2 � Ja � 	Jc, �13�

here 	 is a trade-off parameter that is used to control the weight be-
ween the data misfit Ja and the constraint misfit Jc. Thus, for a fixed
et of spikes’lags, the least-squares solution is given by

�J

� �̂
� 0 ⇒ �̂ � F�1�ATs � 	CT�� , �14�

here F � ATA � 	CTC.

uadratic regularization

So far, the inverse problem has been regularized by fixing the
umber of spikes of the sparse-spike model. However, the matrix in-
ersion involved in equation 14 may require additional regulariza-
ion to stabilize the solution further, especially when M is relatively
arge. So, the new solution, given the lags, can be written as

�̂ � �F � 
 I��1�ATs � 	CT�� , �15�

here 
 is the damping factor �also known as prewhitening� and I is
he identity matrix.

It is easy to show that the above solution is obtained after mini-
izing the new cost function

J � Ja � 	Jc � 
 J� , �16�

here J� � ���2 is the L2-norm of the solution. In practice, I set 


 f , where f � max 
F � and 
 is some positive small num-
0 0 0 i ii 0

Downloaded 12 Jul 2010 to 163.10.46.13. Redistribution subject to S
er. However, for a given M, one would like 
 0 to be as large as pos-
ible, provided both data and constraints are honored. The selection
f M and the trade-off parameters is discussed later.

he algorithm

The algorithm for the sparse-spike deconvolution of the seismic
race with impedance constraints is an iterative process where each
A iteration involves guessing a set of M lags, updating matrices A
nd C �and F�, and solving equation 15. Misfit Ja also is computed to
heck convergence. When the expected misfit and/or a user-defined
aximum number of iterations itmax is reached, the SA iteration

tops. Step by step, the algorithm is as follows:

� Fix M. Set the trade-off parameters 	 and 
 .
� Set the initial set of time lags 
�̂ j

0�, j � 1,M.
� For each SAiteration l, do the following:

a� Set the new set of time lags 
�̂ j
l� � 
�̂ j

l�1 � ��̂ j
l�,

j � 1,M.
b� Update A, C, and amplitudes �̂ using equation 15.
c� Evaluate J using equation 16.
d� According to the Metropolis criterion �as usual in

SA�, accept or reject the proposed set of time lags.
e� Also, evaluate J̃a; if J̃a �� and l� itmax, go to Step 3a.

� Convergence �or maximum number of iterations� is achieved.

Steps 1–3 can be repeated using a different number of spikes and/
r trade-off parameters. Also, constraints in the location of one or
ore spikes can be implemented easily. This allows one to introduce

ome previous knowledge from well-log analysis or data-processing
echniques, especially for the most important reflectors. Because
ach unknown parameter �the sample index along the trace� has an
ssociated search range, it is easy to fix one or more spikes’locations
or narrow their search range� during the SA iteration. This process
ertainly would reduce the nonuniqueness of the solution and the un-
ertainty at these locations.

ncertainty

In spite of M being fixed and 
 0 being selected as large as possi-
le, there still may exist many solutions that fit the data equally well
the model space may still be quite large�. Logically, the greater the
oise level, the greater the uncertainty �variability�. In this regard, it
s very useful to take advantage of the stochasticity of the SAprocess
nd get an estimate of the uncertainty of the obtained solution by per-
orming several SA runs using different seeds. In the next examples,
compute the uncertainty by repeating the SA run using different

eeds while keeping M, 
 0, and 	 fixed. Of course, the data, the con-
traints, and the noise are the same in all runs.

RESULTS AND DISCUSSION

D synthetic data

Figure 1 illustrates the proposed method. The first row shows the
rue reflectivity sequence �composed of 12 spikes�, the correspond-
ng impedance profile, the seismic trace, and the wavelet. Gaussian
oise with � � 0.02 �signal-to-noise ratio of 10� was added to the
ata �the maximum trace value is about 0.2, so the noise level is
bout 10% by amplitude�. The wavelet is a rotated Ricker wavelet
ith a central frequency of 30 Hz.
EG license or copyright; see Terms of Use at http://segdl.org/
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R4 Velis
The next row shows the results �red only� after averaging 100 in-
ependent SA runs �no impedance constraints�. In this case, I select-
d M � 15 and 
 0 � 0.2. All 100 solutions fit the data equally well.
n practice, the iteration stopped when the expected misfit was
eached. The shaded areas illustrate the uncertainty of the solution
66 out of 100 solutions fall within these areas�. The true reflectivity
unction was recovered quite well, with low uncertainty �except for
he smallest spikes�. In contrast, the uncertainty and the error on the
ecovered impedance is large. The third row �red only� shows the av-
rage solution and uncertainty when M � 30 and 
 0 � 0.6. The dif-
erences compared with the M � 15 case are not significant, show-
ng that the selection of M was not critical for these data.

For comparison, the fourth row in Figure 1 �red only� shows the
onsparse �band-limited� least-squares solution obtained after solv-
ng 15 with � j � 1,N � L � 1, where L is the wavelet length �i.e.,

igure 1. Stochastic sparse-spike deconvolution. First row: true refl
ata �S/N � 10�, and wavelet. Second and third rows: recovered refl
nces after averaging 100 independent runs with M � 15 and M � 3
nconstrained case; blue, constrained case�. Fourth row: nonsparse
quares deconvolution and resulting impedance. True impedance cu
hown in all impedance panels for comparison. Green areas show unc
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igure 2. Contour plot of the final misfit �average after 100 realiza-
ions� obtained for a range of M and 
 0 values in the unconstrained
D synthetic example. The expected misfit equals 0.02; to the right
f this line, data are overfitted; to the left, data are underfitted. The
Downloaded 12 Jul 2010 to 163.10.46.13. Redistribution subject to S
ne spike at every sample�. In this case, I selected 
 0 � 0.7, so the
nal misfit approached the expected misfit. No uncertainties can be
omputed for the nonsparse least-squares solution, which failed to
ecover the true reflectivity sequence because its lack of resolution.

Rows two and three �blue only� demonstrate the effect of the im-
edance constraints on the final solution. For this purpose, I assume
hat the acoustic impedance is known at T1 � 0.2 s and T2 � 0.4 s. I
et 	 � 10 to guarantee that the constraints are always honored ac-
urately. For M � 15, I set 
 0 � 0.02, and for M � 30, 
 0 � 0.06.
inally, the last row �blue only� shows the nonsparse �band-limited�

east-squares solution �
 0 � 0.07�.As expected, the accuracy of the
esults obtained using the proposed deconvolution approach has im-
roved significantly, especially for the recovery of the acoustic im-
edance.

Choosing M and the trade-off
parameters

The selection of the trade-off parameter associ-
ated with the impedance constraints 	 usually
does not pose any difficulty, for the correspond-
ing term in the cost function 	Jc is not taken into
account to check convergence of the algorithm
�ultimately, convergence is checked by evaluat-
ing the data misfit term�.As long as the number of
constraints K is significantly smaller than the
number of data samples N �and, of course, smaller
than M�, the minimization of the cost function J
would eventually lead to solutions that reproduce
the data �at SA convergence�, irrespective of the
value of 	 within a reasonable range �note that J
is minimized at every SA iteration�. Various tests
using synthetic data show that, because Ja and Jc

are the same order of magnitude, a value for 	 of
about 10 is enough to force solutions to fit the im-
pedance constraints very accurately.

The other trade-off parameter, the damping
factor 
 0, deserves greater care, for the norm of
the solution �i.e., the spikes’amplitudes� depends
on it. Figure 2 shows a contour plot of the final
misfit corresponding to the unconstrained 1D

ynthetic example of Figure 1 for a wide range of M and 
 0 values
after averaging 100 realizations�. Clearly, all pairs to the right of the
xpected misfit contour line lead to solutions that fit the data; those to
he left do not. In particular, suppose that 
 0 has been fixed and it
akes a moderate value. Under these circumstances, if M is chosen
ith too small a value, data might not be honored. On the other hand,

f M is chosen too large, data might be overfitted. To favor simpler
odels and guarantee sparseness, choose the smallest M so that the

bservations are reproduced as closely as possible without fitting the
oise.

Now suppose that M has been fixed and its value is larger than the
ctual number of spikes of the model. Under these circumstances, if

0 is chosen too small, data might be overfitted and the solution
ight be too oscillatory �unstable�. On the other hand, if 
 0 is chosen

oo large, the observations might not be reproduced as expected. A
roper selection of 
 0 would yield a stable solution that fits the data.
n any case, one wants to be as conservative as possible to avoid
verfitting and to obtain a family of solutions that honors the obser-
ations but is as sparse as possible. The crosses in the figure show

, impedance,
y and imped-
ectively �red,
limited� least
lack� are also
ty.
ectivity
ectivit
0, resp
�band-
rves �b
ertain
rosses denote preferred pairs of parameters.
EG license or copyright; see Terms of Use at http://segdl.org/
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Stochastic sparse-spike deconvolution R5
hree pairs of parameters, M and 
 0, that follow these criteria. The
esults of two of them were already shown in Figure 1.

Note that these two solutions are almost equally sparse, despite
he fact that M � 15 in the first case and M � 30 in the second case.
his is because the selection of the appropriate 
 0 �as discussed
bove� makes the solution rather insensitive to changes in the num-
er of spikes �at least within reasonable ranges of M and 
 0�. All so-
utions whose misfit approaches the expected misfit �crosses along
he contour line 0.02 in Figure 2� show a similar behavior. In a way,
he role of 
 0 is to contribute to the sparseness of the solution when

is chosen larger than the actual number of spikes.
In summary, if M is fixed, the trade-off parameter 
 0 can be cho-

en using a simple search so that the resulting misfit after the decon-
olution equals its expectation. In practice, this can be done by per-
orming a few tests using different values of 
 0. Synthetic tests show
hat a 
 0 in the range 0.0–1.0 usually produces the desired results for

oderate M values.

andling wavelet inaccuracies

Though several methods exist to estimate the seismic wavelet that
ields reasonable results even for nonminimum phase sources �e.g.,
lrych et al., 1995; Porsani and Ursin, 2000�, often the quality of the
erived wavelets is data dependent. Clearly, ignoring wavelet inac-
uracies would lead to partially successful deconvolution results. In
his regard, the knowledge of the wavelet phase is a critical first step
n carrying out the deconvolution �Levy and Oldenburg, 1982�. For-
unately, seismic wavelets usually are simpler than we think, and a
onstant-phase shift may be enough to characterize the main ob-
erved structure of a processed wavelet to a very good approxima-
ion �Neidell, 1991�. This suggests that a constant-phase shift can be
ncluded as an additional unknown to calibrate the wavelet estimate
nd to improve the accuracy of the deconvolution process.

Figure 3 �left column� shows the results of the stochastic sparse-
pike deconvolution when the utilized wavelet is in error by a con-
tant-phase shift of �0.5 radians with respect to the original wavelet
sed to generate the data. Often, in spite of the wavelet being clearly
rong, data can be honored anyway by selecting 
 0 small enough

nd/or M large enough, once again showing the nonuniqueness of
he inverse problem. In effect, Figure 4 shows the contour plot of the
nal misfit corresponding to the previous example �the selected pa-
ameter pairs �M,
 0� are marked in the plot�. There exist many
parse solutions that fit the data even with the wrong wavelet. In the
revious example, I used 
 0 � 0.1 and 0.5 for M � 15 and M � 30,
espectively, reaching the expected misfit in all cases. Even so, the
econvolution results were partially successful, as shown in Figure 3
left column�.

A comparison of Figure 4 with the contour plot shown in Figure 2
which utilizes the true wavelet� reveals that, for a given pair
M,
 0�, the misfit is larger when the wavelet is affected by errors in
he phase. In addition, Figure 5 shows the misfit versus the constant-
hase shift 
 used to calibrate the wavelet for various 
 0 and M

15 and M � 30. The minima are close to the value that would
ake the inaccurate wavelet to match the phase of the true wavelet
i.e., 
 	0.5 radians�, even when a large value of 
 0 precludes
eaching the expected misfit for any constant-phase shift.

Tests with phase shifts other than �0.5 radians �not shown� pro-
uce the same behavior. As a result of this analysis, one possible
trategy for handling inaccuracies in the wavelet is to conduct a
earch for the constant-phase shift that minimizes the misfit for any
Downloaded 12 Jul 2010 to 163.10.46.13. Redistribution subject to S
easonable set of parameters �M,
 0�. As before, the smallest M val-
es that lead to solutions that fit the data at about the expected misfit
0.02 in this case� are preferred. By inspecting Figure 5, this strategy
uggests that a good choice of parameters is 
 0 � 0.2 and 
 	0.5
or the M � 15 case and 
 0 � 0.6 and 
 	0.5 for M � 30. The re-
ults for these two cases are shown in Figure 3 �right column�.

D synthetic data

The algorithm can be applied to 2D �or 3D� data in a trace-by-
race process. Experience shows that the desired coherence in the
ateral direction can be obtained without including an additional
erm in the cost function, thus avoiding the need to deal with another
rade-off parameter.

igure 3. Stochastic sparse-spike deconvolution with wavelet inac-
uracies. First row: true reflectivity and wavelets �black, true; red,
naccurate�. Second and third rows: recovered reflectivity after aver-
ging 100 independent runs with M � 15 and M � 30, respectively
red, using the inaccurate wavelet; blue, using the calibrated wave-
et�. Green areas show uncertainty.
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R6 Velis
In the example, the reflectivity section is constructed by extract-
ng a portion of the P-wave velocity Marmousi2 model �Martin et al.,
006�, as shown in Figure 6. For the sake of simplicity, I assume con-
tant density throughout the model and constant velocity within each
ayer, giving rise to the reflectivity section �after depth-to-time con-
ersion� shown in Figure 7b. Then, using the same wavelet of the
revious example, I simulate the noise-free zero-offset section
hown in Figure 7a. This data set consists of 201 traces with an offset
nterval of 12.5 m and a time window of 1 s ��t � 4 ms�.

igure 5. Misfit versus phase shift for various damping factors �
 0�
n the unconstrained 1D synthetic example: �a� M � 15, �b� M

30.
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igure 6. Marmousi2 P-wave velocity model �top� and portion of the
riginal model �bottom� used to generate the reflectivity section
hown in Figure 7.
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The results of the stochastic sparse-spike deconvolution �noise-
ree input data� with M � 45 and 
 0 � 0.25 are shown in Figure 7c.
he estimated reflectivity section is the average section after 100 in-
ependent SA runs. Figure 7d illustrates the uncertainty of the de-
ived solution. Despite the fact the M has been selected quite large
the true reflectivity shows no more than 20–25 spikes for any one
ingle trace�, the solution does not contain spurious artifacts, and all
ain reflectors were recovered and resolved very accurately with the

ppropriate lateral coherence. The five very close reflectors located
t about 1.4 s were not resolved so accurately, but in general, the
uality of the deconvolution is very good.

Figure 7 �column two� shows the results when the input data are
ontaminated with 10% additive Gaussian noise. As expected, the
ncertainty and variability of the solution increase. Nevertheless,
ost reflectors are recovered very well.
When the wavelet is in error, the results of the deconvolution dete-

iorates. Figure 8c shows the results of the sparse-spike deconvolu-
ion �M � 25, 
 0 � 0.1, S/N � 10� when the wavelet phase is
hifted by 0.75 rad. For example, the reflector at about 1.4 s appears
s two reflectors instead of one. The wavelet can be calibrated after
nspecting Figure 9, where the misfit corresponding to a single trace
ithin the window shown in Figure 8 is plotted for various phase

hifts and 
 0 �M � 25 in all cases�. As expected, a phase shift of
bout �0.75 rad minimizes the misfit for any 
 0 �the behavior of the
isfit curves for other traces is similar�. Finally, the deconvolved

ection using the calibrated wavelet is shown in Figure 8d, where the
rue reflectivity is recovered very accurately.

ield data

Figure 10 shows a portion of a seismic 3D migrated data set col-
ected somewhere in the Neuquen basin �Argentina� before and after
he sparse-spike deconvolution �for the sake of simplicity, only one
nline and crossline are displayed�. The utilized seismic wavelet, ob-
ained by standard procedures using the available information pro-
ided by a well located within the shown data set ranges, is shown in
igure 11. The selected seismic volume consists of 33�33 traces
nd a time window of 1 s that goes from 0.8 to 1.8 s ��t � 2 ms�.
or this example, I set M � 25 and 
 0 � 0.05.
Figure 12 shows a comparison between the amplitude spectra be-

ore and after the sparse-spike deconvolution. The spectra were cal-
ulated after averaging all of the individual spectra of the analyzed
olume. In general, an increase in the frequency content is observed
both low and high frequencies�, leading to a significant improve-
ent on the vertical resolution.
The dominant frequency, calculated by averaging the frequencies

orresponding to both spectrum end points at �10 dB, goes from
bout 23 Hz in the original data set to about 45 Hz after the deconvo-
ution. In addition, the overall shape of the spectrum within the seis-

ic main frequency band is preserved and enhanced. It is important
o note that the relative amplitudes and lateral coherence of the re-
ectors also are well preserved throughout the deconvolved traces.
ne feature of interest is the anomalous region marked in Figure 10
ith a green oval, which is easier to delineate after the sparse-spike
econvolution.
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Figure 7. Stochastic sparse-spike deconvolution on
the Marmousi2 model. Column one, noise-free
case; column two, noisy case �SNR � 10�. �a and
e� Input data. �b and f� True reflectivity section. �c
and g� Estimated reflectivity section �average after
100 runs�. �d and h� Standard deviation of the re-
flectivity in �c and g�.
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The quality of the deconvolved section can be improved by cali-
rating the wavelet. I performed this calibration for the 33 traces
ontained in the inline shown in Figure 10a and a time window in the
ange of 1.5 to 1.8 s �Figure 14a�. Figure 13 shows the average misfit
urves for various 
 0 �M � 10� corresponding to the selected win-
ow. The plot reveals that a constant phase shift of about 1.0 rad
ields smaller misfit values. Thus, the original zero-phase wavelet
as calibrated using this value �Figure 11� and then input to the

parse-spike deconvolution procedure. The results are shown in Fig-
res 14b and c. Note how the lateral continuity of the marked reflec-
ors is improved.
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Stochastic sparse-spike deconvolution R9
CONCLUSIONS

Sparse-spike deconvolution is viewed as a detection and estima-
ion problem. The detection of the time lags of a given number of
pikes leads to a highly nonlinear optimization procedure that is
olved using very fast SA. The estimation of the amplitudes is done
fter solving a linear least-squares inverse problem that includes
uadratic regularization. Impedance constraints also can be includ-
d at this stage.
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igure 14. Stochastic sparse-spike deconvolution of the selected
indow of the field data set �M � 10, 
 0 � 0.1�. �a� Input data. �b�
stimated reflectivity using the original zero-phase wavelet �aver-
ge after 100 realizations�. �c� Estimated reflectivity using the cali-
rated wavelet �average after 100 realizations�. Green arrows show
eflectors with improved lateral continuity.
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Quadratic regularization provides the remedy for numerical insta-
ilities and guarantees that the derived reflectivity sequences are
eaningful from a physical point of view. In the tested examples, the

argest damping factor still leading to solutions that fit the data �and
onstraints� within a given tolerance error �misfit� is selected after a
ew trials. This strategy makes the selection of the number of spikes
ot critical and the variability of the derived solutions smaller. Fur-
her, wavelet phase inaccuracies are tolerated, and the corresponding
ptimum constant-phase shift is derived to calibrate the available
avelet estimate and to improve the quality of the sparse-spike de-

onvolution.
One advantage of the proposed method is that the uncertainty of

he obtained reflectivities can be estimated by running several SA
uns using different seeds. The acoustic impedance also is estimated
s a by-product of the deconvolution procedure, provided some con-
traints are included at the linear least-squares stage. As expected,
he accuracy of these estimates increases when some impedance
onstraints at different time levels are introduced. Good lateral con-
inuity is achieved, and no spurious artifacts are generated when pro-
essing 2D and 3D data.
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