Active Galactic Nuclei

Sergio A. Cellone^{1,2}

¹Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata, Argentina

> ²Instituto de Astrofísica La Plata CONICET – UNLP

LAPIS 2008

FCAG, UNLP - AAA

(日) (日) (日) (日) (日) (日) (日)

AGN phenomenology The SMBH model Testing the m

Contents

Historical introduction

AGN phenomenology The SMBH model Testing the model concension of the second concension of the se

・ロット (雪) (日) (日)

Active Galactic Nuclei

- 2 AGN phenomenology
- 3 The SMBH model
- 4 Testing the model

AGN phenomenology The SMBH model Testing the

・ コット (雪) ・ (目) ・ (目)

Early discoveries

Wild beasts in the astronomical zoo ...

(... long before GARRA)

- Seyfert galaxies,
- radio galaxies,
- and quasars.

AGN phenomenology The SMBH model Testing the

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Early discoveries

Wild beasts in the astronomical zoo ...

(... long before GARRA)

Seyfert galaxies,

- radio galaxies,
- and quasars.

AGN phenomenology The SMBH model Testing the

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Early discoveries

Wild beasts in the astronomical zoo ...

(... long before GARRA)

- Seyfert galaxies,
- radio galaxies,
- and quasars.

AGN phenomenology The SMBH model Testing the

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Early discoveries

Wild beasts in the astronomical zoo ...

(... long before GARRA)

- Seyfert galaxies,
- radio galaxies,
- and quasars.

AGN phenomenology The SMBH model Testing the

Early discoveries

Seyfert galaxies

Fath 1909: strong emission lines in the optical spectrum of the "spiral nebula" NGC 1068

Slipher 1917: emissions in NGC 1068 were not monochromatic (i.e., broad)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Hubble 1926: a few spiral galaxies with stellar nuclei had optical spectra similar to planetary nebulæ

AGN phenomenology The SMBH model Testing the r

Early discoveries

Seyfert galaxies

Fath 1909: strong emission lines in the optical spectrum of the "spiral nebula" NGC 1068 Slipher 1917: emissions in NGC 1068 were not monochromatic (i.e., broad)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Hubble 1926: a few spiral galaxies with stellar nuclei had optical spectra similar to planetary nebulæ

AGN phenomenology The SMBH model Testing the r

Early discoveries

Seyfert galaxies

Fath 1909: strong emission lines in the optical spectrum of the "spiral nebula" NGC 1068 Slipher 1917: emissions in NGC 1068 were not monochromatic (i.e., broad)

・ コット (雪) ・ (目) ・ (目)

Hubble 1926: a few spiral galaxies with stellar nuclei had optical spectra similar to planetary nebulæ

AGN phenomenology The SMBH model Testing the

Early discoveries

Seyfert galaxies

Carl Seyfert (1943)

started the systematic study of spiral galaxies with stellar-like nuclei. They showed composite optical spectra:

G-type starlight (\equiv normal galaxy) + strong, high excitation emission lines.

・ロン ・聞 と ・ ヨ と ・ ヨ と

AGN phenomenology The SMBH model Testing the model

Early discoveries

Seyfert galaxies

NGC 5548 (Seyfert galaxy)

NGC 3277 (normal Sbc)

500

AGN phenomenology The SMBH model Testing the

Early discoveries

Seyfert galaxies Spectra

▲□▶▲□▶▲□▶▲□▶ □ のへの

AGN phenomenology The SMBH model Testing the model

Early discoveries

Radio galaxies

- Up to 1609 (G. Galilei): milennia of naked-eye Astronomy
- 1609 1935 (K. Jansky): 3 centuries of optical telescopes

Optical identification of radio sources was (is) needed.

First (discrete) radio-sources identified (Bolton et al. 1949)

Tau A \equiv Crab Nebula(SNR)Vir A \equiv M87(radio galaCen A \equiv NGC 5128(radio gala

Early discoveries

Radio galaxies

- Up to 1609 (G. Galilei): milennia of naked-eye Astronomy
- 1609 1935 (K. Jansky): 3 centuries of optical telescopes

Optical identification of radio sources was (is) needed.

First (discrete) radio-sources identified (Bolton et al. 1949)

Tau A	\equiv	Crab Nebula	(SNR)
Vir A	\equiv	M87	(radio galaxy)
Cen A	\equiv	NGC 5128	(radio galaxy)

AGN phenomenology The SMBH model Testing the model concension conc

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Early discoveries

Note

Radio continuum: $\nu = 60 - 80 - 100$ Mhz ($\equiv \lambda = 5.0 - 3.7 - 2.0$ m, respec.) Non-thermal spectrum (synchrotron radiation)

The HI 21 cm (\equiv 1.4 Ghz) line would not be detected until 1951

AGN phenomenology The SMBH model Testing the model occorrection occorr

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Early discoveries

Note

Radio continuum: $\nu = 60 - 80 - 100$ Mhz ($\equiv \lambda = 5.0 - 3.7 - 2.0$ m, respec.) Non-thermal spectrum (synchrotron radiation)

The HI 21 cm (\equiv 1.4 Ghz) line would not be detected until 1951

AGN phenomenology The SMBH model Testing the model

Early discoveries

Jennison & Das Gupta (1953): radio source Cyg A \rightarrow two-component radio morphology

Baade & Minkowski (1954): optical object ~ "two colliding galaxies" $z = 0.056 \Rightarrow L_{rad} \approx 6 \times 10^{43} \text{ erg s}^{-1} (H_0 = 70 \text{ km s}^{-1} \text{Mpc}^{-1}).$

Radio Image of Cygnus-A (FR-II)

z=0.056 (d=300 Mpc)

 Early discoveries

Radio galaxies

Jennison & Das Gupta (1953): radio source Cyg A \rightarrow two-component radio morphology Baade & Minkowski (1954): optical object ~ "two colliding galaxies" $z = 0.056 \Rightarrow L_{rad} \approx 6 \times 10^{43} \text{ erg s}^{-1} (H_0 = 70 \text{ km s}^{-1} \text{Mpc}^{-1}).$

Radio Image of Cygnus-A (FR-II)

z=0.056 (d=300 Mpc)

5 GHz Image ; Ø 200 kpc

AGN phenomenology The SMBH model Testing the model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Early discoveries

Quasars

Edge et al. (1959): 3rd Cambridge survey of radio sources

A. Sandage (1960): radio-source $3C48 \equiv 16 \text{ mag}$, variable star-like object

Matthews & Sandage (1963): optical spectrum with broad unknown emission lines

AGN phenomenology The SMBH model Testing the mo

Early discoveries

Quasars

Edge et al. (1959): 3rd Cambridge survey of radio sources

A. Sandage (1960): radio-source $3C48 \equiv 16 \text{ mag}$, variable star-like object

Matthews & Sandage (1963): optical spectrum with broad unknown emission lines

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Quasi-stellar radio-sources (QSRS or QSS) \rightarrow quasar

AGN phenomenology The SMBH model Testing the mod

Early discoveries

Quasars

Edge et al. (1959): 3rd Cambridge survey of radio sources

A. Sandage (1960): radio-source $3C48 \equiv 16 \text{ mag}$, variable star-like object

Matthews & Sandage (1963): optical spectrum with broad unknown emission lines

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Quasi-stellar radio-sources (QSRS or QSS) \rightarrow quasar

AGN phenomenology The SMBH model Testing the mod

Early discoveries

Quasars

Edge et al. (1959): 3rd Cambridge survey of radio sources

A. Sandage (1960): radio-source $3C48 \equiv 16 \text{ mag}$, variable star-like object

Matthews & Sandage (1963): optical spectrum with broad unknown emission lines

・ コット (雪) ・ (目) ・ (目)

Quasi-stellar radio-sources (QSRS or QSS) \rightarrow quasar

Early discoveries

AGN phenomenology The SMBH model Testing the model

Maarten Schmidt (1963): optical spectrum

ヘロト 人間 とくほとくほとう

ъ

Early discoveries

Quasars

AGN phenomenology The SMBH model Testing the model

Maarten Schmidt (1963): optical spectrum

◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)

Early discoveries

Quasars

AGN phenomenology The SMBH model Testing the model

Maarten Schmidt (1963): optical spectrum

z = 0.158

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Early discoveries

AGN phenomenology The SMBH model Testing the n

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

- no proper motions
- no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed)

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

L_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

AGN phenomenology The SMBH model Testing the occessor occ

Early discoveries

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

- no proper motions
- no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed)

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

L_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

AGN phenomenology The SMBH model Testing th

Early discoveries

Quasars

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

- no proper motions
- no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed)

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

L_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

AGN phenomenology The SMBH model Testing th

Early discoveries

Quasars

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

- no proper motions
- no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed)

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

L_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

(日) (日) (日) (日) (日) (日) (日)

Early discoveries

Quasars

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

- no proper motions
- no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed)

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

L_{opt} ≥ 10 - 30 times bright E galaxy
 size ≪ normal galaxy

(日) (日) (日) (日) (日) (日) (日)

Early discoveries

AGN phenomenology The SMBH model Testing the r

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

no proper motions

no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

*L*_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

・ コット (雪) ・ (目) ・ (目)

Early discoveries

AGN phenomenology The SMBH model Testing the n

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

no proper motions

no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

*L*_{opt} ≥ 10 − 30 times bright E galaxy
 size ≪ normal galaxy

Early discoveries

AGN phenomenology The SMBH model Testing the n

Quasars have high redshifts

Doppler redshifts: Nearby objects moving at high speeds

no proper motions

no blueshifts

Gravitational redshifts: supermassive object (GR)

 extremely high electron densities (no forbidden lines should be observed

Cosmological redshifts: $d \simeq c z H_0^{-1}$ (for $z \ll 1$)

- $L_{opt} \ge 10 30$ times bright E galaxy
- size ≪ normal galaxy

AGN phenomenology The SMBH model Testing the mod

Early discoveries

Quasars

Sandage (1965): quasars have U excess

Large population of radio-quiet quasars

quasi-stellar objects \rightarrow QSO

・ロット (雪) (日) (日)

3

AGN phenomenology The SMBH model Testing the model concension conc

The AGN conception

Origins of the SMBH model

Salpeter (1964); Zel'dovich & Novikov (1964): Energy source in quasars and radio galaxies is accretion onto a super-massive black hole (SMBH)

Lynden-Bell (1969):

energy in radio-galaxies (lobes) $\rightarrow E_{\rm RG} \sim 10^{61}$ erg. Its associated mass is:

$$\mathcal{M}_E = E_{\rm RG} c^{-2} \simeq 6 \times 10^6 \, \mathcal{M}_{\odot},$$

if result of nuclear burning, requires an original mass

$$\mathcal{M} \geq rac{\mathcal{M}_E}{0.007} \simeq 10^9 \mathcal{M}_{\odot}.$$
AGN phenomenology The SMBH model Testing the mod

The AGN conception

Origins of the SMBH model

Salpeter (1964); Zel'dovich & Novikov (1964): Energy source in quasars and radio galaxies is accretion onto a super-massive black hole (SMBH)

Lynden-Bell (1969):

energy in radio-galaxies (lobes) $\rightarrow E_{RG} \sim 10^{61}$ erg. Its associated mass is:

$$\mathcal{M}_{\textit{E}} = \textit{E}_{\text{RG}}\,\textit{c}^{-2} \simeq 6 \times 10^6\,\mathcal{M}_{\odot}, \label{eq:mass_eq}$$

if result of nuclear burning, requires an original mass

$$\mathcal{M} \geq rac{\mathcal{M}_E}{0.007} \simeq 10^9 \mathcal{M}_{\odot}.$$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

AGN phenomenology The SMBH model Testing the mod

The AGN conception

Origins of the SMBH model

Salpeter (1964); Zel'dovich & Novikov (1964): Energy source in quasars and radio galaxies is accretion onto a super-massive black hole (SMBH)

Lynden-Bell (1969):

energy in radio-galaxies (lobes) $\rightarrow E_{RG} \sim 10^{61}$ erg. Its associated mass is:

$$\mathcal{M}_{\textit{E}} = \textit{E}_{\text{RG}} \, \textit{c}^{-2} \simeq 6 \times 10^6 \, \mathcal{M}_{\odot}, \label{eq:mass_eq}$$

if result of nuclear burning, requires an original mass

$$\mathcal{M} \geq \frac{\mathcal{M}_{\textit{E}}}{0.007} \simeq 10^9 \mathcal{M}_{\odot}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

AGN phenomenology The SMBH model Testing the mo

The AGN conception

Origins of the SMBH model

Lynden-Bell (1969):

Variability $\Rightarrow R \le 10$ light-hs = 10^{15} cm.

Binding energy

$$rac{G\,\mathcal{M}^2}{R}\simeq 2.7 imes 10^{62}\, ext{erg}.$$

Thus, with the aim to produce a model based on nuclear fuel, we have ended up with a model which has produced more than enough energy by gravitational contraction, while nuclear fuel has ended as an irrelevance. AGN phenomenology The SMBH model Testing the mo

The AGN conception

Origins of the SMBH model

Lynden-Bell (1969):

Variability $\Rightarrow R \le 10$ light-hs = 10^{15} cm. Binding energy

$$rac{G\,\mathcal{M}^2}{R}\simeq 2.7 imes 10^{62}\,\mathrm{erg}.$$

Thus, with the aim to produce a model based on nuclear fuel, we have ended up with a model which has produced more than enough energy by gravitational contraction, while nuclear fuel has ended as an irrelevance. AGN phenomenology The SMBH model Testing the mo

The AGN conception

Origins of the SMBH model

Lynden-Bell (1969):

Variability $\Rightarrow R \le 10$ light-hs = 10^{15} cm. Binding energy

$$rac{G\,\mathcal{M}^2}{R}\simeq 2.7 imes 10^{62}\,\mathrm{erg}.$$

Thus, with the aim to produce a model based on nuclear fuel, we have ended up with a model which has produced more than enough energy by gravitational contraction, while nuclear fuel has ended as an irrelevance.

AGN phenomenology The SMBH model Testing the

・ コット (雪) ・ (目) ・ (目)

The AGN conception

Sy + RG + QSO = AGN

Seyfert nuclei & radio galaxies: scaled-down versions of QSO

Do quasars reside at the centres of galaxies?

AGN phenomenology The SMBH model Testing the r

ヘロト 人間 とくほとくほとう

3

The AGN conception

Sy + RG + QSO = AGN

Seyfert nuclei & radio galaxies: scaled-down versions of QSO

Do quasars reside at the centres of galaxies?

AGN phenomenology The SMBH model Testing the n

The AGN conception

Sy + RG + QSO = AGN

Quasars lie at the centres of galaxies

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Bahcall et al. 1997)

AGN phenomenology The SMBH model Testing the

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

The AGN conception

Sy + RG + QSO = AGN

Active Galactic Nuclei (AGN)

- Seyfert galaxies,
- radio galaxies,
- quasars (and blazars)

AGN phenomenology The SMBH model Testing to concern the second se

Active Galactic Nuclei

- 2 AGN phenomenology
- 3 The SMBH model
- 4 Testing the model

・ロット (雪) (日) (日)

AGN phenomenology The SMBH model Testing the mo

< ロ > < 同 > < 回 > < 回 >

Optical emission lines

What do we mean by high-excitation?

< ロ > < 同 > < 回 > < 回 >

Optical emission lines

What do we mean by high-excitation?

Optical emission lines

What do we mean by high-excitation?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

AGN phenomenology The SMBH model Testing the m

Optical emission lines

What do we mean by high-excitation?

▲□▶▲□▶▲□▶▲□▶ = つく⊙

AGN phenomenology The SMBH model Testing the model

Optical emission lines

What do we mean by *high-excitation*? Diagnostic diagrams

Diagnostic diagram (Baldwin, Phillips, & Terlevich 1981)

< ロ > < 同 > < 回 > < 回 >

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Optical emission lines

What do we mean by *high-excitation*? Diagnostic diagrams

Sloan Digital Sky Survey (SDSS)

AGN phenomenology The SMBH model Testing the r

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Seyfert 2

Optical emission lines

Seyfert types 1 and 2

Seyfert 1

broad lines: only permitted broad lines: none narrow lines: permitted and prohibited

AGN phenomenology The SMBH model Testing the

Optical emission lines

Quasars

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

AGN phenomenology The SMBH model Testing the model

Optical emission lines

BL Lac objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

AGN phenomenology The SMBH model Testing the model

Optical emission lines

BL Lac objects

AGN phenomenology The SMBH model Testing the n

Continuum

Continuum spectral energy distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AGN phenomenology The SMBH model Testing the

Continuum

Continuum spectral energy distribution

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ○臣 - のへで

AGN phenomenology The SMBH model Testing t

Radio features

Radio emission

21 cm (1.4 GHz) VLA – 11 cm (2.7 GHz) MRAO

AGN phenomenology The SMBH model Testing the m

Radio features

Radio emission

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Radio features

500

Radio lobes: *steep* spectrum Jets: *flat* spectrum

Radio features

Jets

AGN phenomenology

Testing the model

Radio features

AGN phenomenology

3C 273

AGN phenomenology The SMBH model Testing t

Radio features

Jets Apparent superluminal motions

$$\leftarrow 5 \text{ mas} \equiv 30 \text{ pc} \longrightarrow$$

(Image courtesy of NRAO/AUI)

Radio jet of the blazar 3C 279 \sim 25 light-years in \sim 7 yr

$$\therefore$$
 $v_{app} \simeq 3.5 c$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ

AGN phenomenology The SMBH model Testing the model concentration of the state of th

Radio features

Jets Apparent superluminal motions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

AGN phenomenology The SMBH model Testing the

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Flux variability

Long-term variability

quasar 3C 273

historical light-curve (Angione & Smith 1985): $\Delta m \simeq 1 \text{ mag}$

AGN phenomenology

Flux variability

Long-term variability

quasar 3C 273

multi-v light-curve (Türler et al. 1999):

э

AGN phenomenology The SMBH model Testing the model concence of the second concence of the s

Flux variability

Long-term variability

blazar GC 0109+224

historical light-curve (Ciprini et al. 2003): $\Delta m \simeq 4 \text{ mag}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

AGN phenomenology The SMBH model Testir

Testing the model

Flux variability

Long-term variability

blazar AO 0235+164

ヘロト 人間 ト 人 ヨト 人 ヨト

optical – radio light-curve (Raiteri et al. 2006) $\Delta m \gtrsim 7 \text{ mag}$

AGN phenomenology The SMBH model Testing the n

Flux variability

Microvariability

blazar AO 0235+164 optical microvariability: 1.2 mag in \gtrsim 24 hs (Romero et al. 2000)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ○へ⊙

AGN phenomenology The SMBH model Testi

Flux variability

Polarization microvariability

blazar AO 0235+164 high and variable optical polarization: $\Delta P \simeq 10\%$ in $\gtrsim 48$ hs (Cellone et al. 2007)

・ロット (雪) ・ (日) ・ (日)

э

AGN phenomenology The SMBH model Testii

Flux variability

Polarization microvariability

blazar AO 0235+164 high and variable optical polarization: $\Delta P \simeq 10\%$ in $\gtrsim 48$ hs (Cellone et al. 2007)

ヘロト 人間 とくほ とくほ とう

э
AGN phenomenology The SMBH model

Testing the model

Flux variability

Polarization microvariability

blazar AO 0235+164 high and variable optical polarization: $\Delta P \simeq 5\%$ in ~ 5 hs (Cellone et al. 2007)

・ロト・西ト・ヨト・日下 ひゃぐ

AGN phenomenology The SMBH model Test

Active Galactic Nuclei

- Historical introduction
- 2 AGN phenomenology
- 3 The SMBH model
- 4 Testing the model

・ロット (雪) (日) (日)

GN phenomenology The SMBH model Testin

Building the model

Basic properties of AGN

AGN have:

$\begin{array}{l} \mbox{High luminosity:} \sim 10^{42} \rightarrow 10^{48}\,\mbox{erg}\,\mbox{s}^{-1} \\ \mbox{i.e.}, \sim 10^{-2} \rightarrow 10^4\,\mbox{L_{\star}} \end{array}$

Small size: central engine $\lesssim 10^{0}$ pc

- unresolved in nearby AGN
- variability time-scale \sim few years

Long life: $\sim 10^9$ yr

- luminosity function with z
- density AGN vs. density bright galaxies

GN phenomenology The SMBH model Testing

Building the model

Basic properties of AGN

AGN have:

- High luminosity: $\sim 10^{42} \rightarrow 10^{48} \text{ erg s}^{-1}$ i.e., $\sim 10^{-2} \rightarrow 10^4 L_{\star}$
- Small size: central engine $\lesssim 10^0\,\text{pc}$
 - unresolved in nearby AGN
 - variability time-scale \sim few years

Long life: $\sim 10^9$ y

- luminosity function with z
- density AGN vs. density bright galaxies

▲日▼▲□▼▲□▼▲□▼ □ ● ● ●

GN phenomenology The SMBH model Testing

Building the model

Basic properties of AGN

AGN have:

High luminosity: $\sim 10^{42} \rightarrow 10^{48} \text{ erg s}^{-1}$ i.e., $\sim 10^{-2} \rightarrow 10^4 L_{\star}$

Small size: central engine $\lesssim 10^{0}$ pc

- unresolved in nearby AGN
- ullet variability time-scale \sim few years

Long life: $\sim 10^9$ yr

- Iuminosity function with z
- density AGN vs. density bright galaxies

▲日▼▲□▼▲□▼▲□▼ □ ● ● ●

AGN phenomenology The SMBH model Tes

Building the model

Energy production

Most efficient way to release energy:

accretion into a relativistically deep gravitational potential

$\epsilon \sim 0.1$

AGN phenomenology The SMBH model Testing the m

Building the model

Eddington luminosity

Acceleration due to radiation pressure:

$$a_{\rm rad} = rac{\sigma_{\rm T}}{\mu_{
m p}} rac{L}{4\pi c r^2}$$

$$\Rightarrow \quad \frac{a_{\rm rad}}{g} = \frac{\sigma_{\rm T} L}{4\pi c \,\mu_{\rm p} \,G \,\mathcal{M}_{\bullet}} = \frac{L}{L_{\rm E}}$$

where

$$L_{\rm E} = \frac{4\pi c \, G \, \mathcal{M}_{\bullet} \, \mu_{\rm p}}{\sigma_{\rm T}} = 1.51 \times 10^{38} \frac{\mathcal{M}_{\bullet}}{\mathcal{M}_{\odot}} \, \rm erg \, \rm s^{-1}$$

$$\therefore \quad L = 10^{47} \, \text{erg s}^{-1} \Rightarrow \mathcal{M}_{\bullet} = 10^9 \, \mathcal{M}_{\odot}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AGN phenomenology The SMBH model Testing the mo

Building the model

Eddington luminosity

Acceleration due to radiation pressure:

$$a_{\rm rad} = rac{\sigma_{\rm T}}{\mu_{\rm p}} rac{L}{4\pi c r^2}$$

$$\Rightarrow \quad \frac{a_{\rm rad}}{g} = \frac{\sigma_{\rm T} L}{4\pi c \,\mu_{\rm p} \,G \,\mathcal{M}_{\bullet}} = \frac{L}{L_{\rm E}}$$

where

$$L_{\mathsf{E}} = \frac{4\pi c \, G \, \mathcal{M}_{\bullet} \, \mu_{\mathsf{p}}}{\sigma_{\mathsf{T}}} = 1.51 \times 10^{38} \frac{\mathcal{M}_{\bullet}}{\mathcal{M}_{\odot}} \, \text{erg s}^{-1}$$

 $\therefore \quad L = 10^{47} \, \text{erg s}^{-1} \Rightarrow \mathcal{M}_{\bullet} = 10^9 \, \mathcal{M}_{\odot}$

(日) (日) (日) (日) (日) (日) (日)

AGN phenomenology The SMBH model Testing the mo

Building the model

Eddington luminosity

Acceleration due to radiation pressure:

$$a_{\rm rad} = rac{\sigma_{\rm T}}{\mu_{\rm p}} rac{L}{4\pi c r^2}$$

$$\Rightarrow \quad \frac{a_{\rm rad}}{g} = \frac{\sigma_{\rm T} L}{4\pi c \,\mu_{\rm p} \, G \,\mathcal{M}_{\bullet}} = \frac{L}{L_{\rm E}}$$

where

$$L_{\mathsf{E}} = \frac{4\pi c \, G \, \mathcal{M}_{\bullet} \, \mu_{\mathsf{p}}}{\sigma_{\mathsf{T}}} = 1.51 \times 10^{38} \frac{\mathcal{M}_{\bullet}}{\mathcal{M}_{\odot}} \, \text{erg s}^{-1}$$

$$\therefore \quad L = 10^{47} \, \text{erg s}^{-1} \Rightarrow \mathcal{M}_{\bullet} = 10^9 \, \mathcal{M}_{\odot}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

AGN phenomenology The SMBH model Tes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Building the model

Nature of the engine

Need for a large mass

- energy output
- Eddington luminosity
- broad emission lines
- relativistic outflows (jets)

AGN phenomenology The SMBH model

Testing the model

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Building the model

Nature of the massive object(s)

single super-massive black hole (SMBH)

- stability
- oherent variability
- well collimated jets

AGN phenomenology The SMBH model Testir

・ コット (雪) ・ (目) ・ (目)

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Testin

・ コット (雪) ・ (目) ・ (目)

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Testin

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Testin

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Testin

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Testin

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Building the model

Phenomenology

- nature of continuum emission
- nature of line emission
- broad lines vs. narrow lines
- radio loud vs. radio quiet
- jets & radio lobes
- blazar phenomenology

AGN phenomenology The SMBH model Test

Testing the model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Building the model

The SMBH model

The SMBH model AGN phenomenology

Building the model

The SMBH model

AGN phenomenology The SMBH model Testing the model

Building the model

The SMBH model

(Brooks/Cole Thomson Learning)

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD emission	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR jet	recombination in photo-ionized gas synchrotron non-thermal (inverse Compton)	optical (emission line spectrum) radio up to γ -rays

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD emission	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR jet	recombination in photo-ionized gas synchrotron non-thermal (inverse Compton)	optical (emission line spectrum) radio up to γ -rays

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD emission	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR jet	recombination in photo-ionized gas synchrotron non-thermal (inverse Compton)	optical (emission line spectrum) radio up to γ -rays

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR	emission recombination in photo-ionized gas	optical (emission line spectrum)
jet	synchrotron	radio
	non-thermal	up to γ -rays
	(inverse Compton)	

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD emission	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR	recombination in photo-ionized gas	optical (emission line spectrum)
jet	synchrotron	radio
	non-thermal	up to γ -rays
	(inverse Compton)	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

AGN phenomenology The SMBH model Testing the model

Confrontation to observations

Emission properties

component	emission mechanism	spectral range
accretion disk dusty torus	thermal ($T \lesssim 10^5$ K) reprocessed AD emission	optical \rightarrow soft X-rays sub-mm \rightarrow IR
BLR – NLR	recombination in photo-ionized gas	optical (emission line spectrum)
jet	synchrotron non-thermal (inverse Compton)	radio up to γ -rays

AGN phenomenology The SMBH model Testin

esting the model

Confrontation to observations

Continuum emission

▲ロ▶▲圖▶▲≣▶▲≣▶ = つんの

AGN phenomenology The SMBH model Testing to concern the second concern to concern to

Confrontation to observations

Continuum emission

▲日▶▲圖▶▲圖▶▲圖▶ 圖 のへの

AGN phenomenology The SMBH model Testing the m

Confrontation to observations

Continuum emission

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▶

AGN phenomenology The SMBH model Testing the model concension of the second concension of the se

Confrontation to observations

Continuum emission

- イロト 4 聞 ト 4 国 ト 4 国 - のへの

AGN phenomenology The SMBH model Test

Testing the model

Confrontation to observations

Continuum emission

Cen A: non-thermal contribution in the mid - far IR

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

AGN phenomenology The SMBH model Testin

Testing the model

Confrontation to observations

Unification Broad lines vs. narrow lines

NGC 1068 (Antonucci & Miller 1985):

- "normal" light \rightarrow Sy 2
- polarized light →
 Sy 1 features

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

BLR light scattered by electrons into the line of sight

Confrontation to observations

Unification Broad lines vs. narrow lines

NGC 1068 (Antonucci & Miller 1985):

- "normal" light \rightarrow Sy 2
- polarized light →
 Sy 1 features

・ コット (雪) ・ (目) ・ (目)

BLR light scattered by electrons into the line of sight

Confrontation to observations

Unification Broad lines vs. narrow lines

NGC 1068 (Antonucci & Miller 1985):

- "normal" light \rightarrow Sy 2
- polarized light →
 Sy 1 features

BLR light scattered by electrons into the line of sight

AGN phenomenology The SMBH model Testing t

<ロ> (四) (四) (三) (三) (三) (三)

Confrontation to observations

Unification

- obscuration
- beaming

AGN phenomenology The SMBH model Testim

Confrontation to observations

Unification

- obscuration
- beaming

Sy 2 or NLRG (or "obscured" QSO)

・ コ マ チ (雪 マ チ (雪 マ)

э
Confrontation to observations

Unification

- obscuration
- beaming

(or "normal" QSO)

・ロン ・四 と ・ ヨ と ・ ヨ と

3

AGN phenomenology The SMBH model Testing

Confrontation to observations

Unification

- obscuration
- beaming

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Confrontation to observations

Blazars The wildest of all beasts

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

BL Lacs + FSRQs = blazars

- Strong emission from radio to $\gamma\text{-rays}$
- Fast, high-amplitude flux variability
- High and variable polarization
- Superluminal motions (radio jet)

Historical introduction	AGN phenomenology	The SMBH model	Testing the model
Confrontation to observations			
Blazars Relativistic beaming			

Plasma with bulk motion $\beta = \frac{v}{c} \lesssim 1$ and angle $\theta \gtrsim 0^{\circ}$ \rightarrow emission is beamed in the observer's direction

Lorentz factor: $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$ Doppler factor: $\delta = [\gamma(1 - \beta \cos \theta)]^{-1}$

	rest frame	observer's frame
time interval	t	$\delta^{-1}t$
frequency	ν	$\delta \nu$
intensity	$I_{\nu}(\nu)$	$\delta^3 I_{\nu}(\nu)$
flux density	$F_{\nu}(\nu)$	$\delta^{(3+\alpha)}F_{\nu}(\nu)$
broad-band flux	F	$\delta^4 F$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Plasma with bulk motion $\beta = \frac{v}{c} \lesssim 1$ and angle $\theta \gtrsim 0^{\circ}$ \rightarrow emission is beamed in the observer's direction Lorentz factor: $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$

Doppler factor: $\delta = [\gamma(1 - \beta \cos \theta)]^{-1}$

	rest frame	observer's frame
time interval	t	$\delta^{-1}t$
frequency	ν	$\delta \nu$
intensity	$I_{\nu}(\nu)$	$\delta^3 I_{\nu}(\nu)$
flux density	$F_{\nu}(\nu)$	$\delta^{(3+\alpha)}F_{\nu}(\nu)$
broad-band flux	F	$\delta^4 F$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Historical introduction	AGN phenomenology	The SMBH model	Testing the model
Confrontation to observations			
Blazars Relativistic beaming			

Plasma with bulk motion $\beta = \frac{v}{c} \lesssim 1$ and angle $\theta \gtrsim 0^{\circ}$ \rightarrow emission is beamed in the observer's direction Lorentz factor: $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$ Doppler factor: $\delta = [\gamma(1 - \beta \cos \theta)]^{-1}$

	restrame	observer s frame
time interval	t	$\delta^{-1}t$
frequency	ν	$\delta \nu$
intensity	$I_{\nu}(\nu)$	$\delta^3 I_{\nu}(\nu)$
flux density	$F_{\nu}(\nu)$	$\delta^{(3+\alpha)}F_{\nu}(\nu)$
broad-band flux	F	$\delta^4 F$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Plasma with bulk motion $\beta = \frac{v}{c} \lesssim 1$ and angle $\theta \gtrsim 0^{\circ}$ \rightarrow emission is beamed in the observer's direction Lorentz factor: $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$

Doppler factor:
$$\delta = [\gamma(1 - \beta \cos \theta)]^{-1}$$

	rest frame	observer's frame
time interval	t	$\delta^{-1}t$
frequency	u	δu
intensity	$I_{ u}(u)$	$\delta^{3}I_{\nu}(\nu)$
flux density	$F_{\nu}(\nu)$	$\delta^{(3+lpha)}F_{ u}(u)$
broad-band flux	F	$\delta^4 F$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Plasma with bulk motion $\beta = \frac{v}{c} = 0.99$ and angle $\theta = 5^{\circ}$

Lorentz factor: $\gamma = (1 - \beta^2)^{-\frac{1}{2}} = 7$. Doppler factor: $\delta = [\gamma(1 - \beta \cos \theta)]^{-1} = 10$.

	rest frame	observer's frame	example
time interval	t	$\delta^{-1}t$	0.1 <i>t</i>
frequency	u	δu	10 $ u$
intensity	$I_{ u}(u)$	$\delta^3 I_{\nu}(\nu)$	$10^{3}I_{\nu}(u)$
flux density	$F_{\nu}(\nu)$	$\delta^{(3+\alpha)}F_{\nu}(\nu)$	$10^{(3+\alpha)}F_{\nu}(\nu)$
broad-band flux	F	$\delta^4 F$	10 ⁴ <i>F</i>

AGN phenomenology The SMBH model Test

Testing the model

Confrontation to observations

Blazars Spectral energy distribution

AGN phenomenology The SMBH model Testi

Confrontation to observations

Blazars Spectral energy distribution

5 DQC

AGN phenomenology The SMBH model Te

Testing the model

Confrontation to observations

Alternative models

Terlevich et al. (1992):

AGN phenomenology explained by starburts

Previous dichotomy "monster" vs. starburst now replaced by realization that each phenomenon has its own significance

▲ロト▲圖ト▲目ト▲目ト 目 のへで

AGN phenomenology The SMBH model Te

Testing the model

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Confrontation to observations

Alternative models

Terlevich et al. (1992):

AGN phenomenology explained by starburts

Previous dichotomy "monster" vs. starburst now replaced by realization that each phenomenon has its own significance

Testing the model

Confrontation to observations

The radio-loud radio-quiet dichotomy

AN phenomenology The SMBH model T

Testing the model

Confrontation to observations

The radio-loud radio-quiet dichotomy

The SEDs of RL and RQ quasars do not differ at higher frequencies

46 7 3 9 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The existence or not of a radio jet is basically independent from accretion

AGN phenomenology The SMBH model T

Testing the model

Confrontation to observations

The radio-loud radio-quiet dichotomy

The SEDs of RL and RQ quasars do not differ at higher frequencies

・ロット (雪) (日) (日)

The existence or not of a radio jet is basically independent from accretion

AGN phenomenology The SMBH model

Testing the model

・ロット (雪) ・ (日) ・ (日)

Confrontation to observations

The radio-loud radio-quiet dichotomy

RL AGN: never in S galaxies RQ AGN: rarely in E galaxies (e.g., Wilson & Colbert 1995)

Galaxy mergers \rightarrow E galaxies with spinning SMBH

Radio jet powered by SMBH spin

AGN phenomenology The SMBH model

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Confrontation to observations

The radio-loud radio-quiet dichotomy

RL AGN: never in S galaxies RQ AGN: rarely in E galaxies

(e.g., Wilson & Colbert 1995)

Galaxy mergers \rightarrow E galaxies with spinning SMBH

Radio jet powered by SMBH spin

AGN phenomenology The SMBH model

Testing the model

Confrontation to observations

The radio-loud radio-quiet dichotomy

RL AGN: never in S galaxies RQ AGN: rarely in E galaxies (e.g., Wilson & Colbert 1995)

Galaxy mergers \rightarrow E galaxies with spinning SMBH

Radio jet powered by SMBH spin

< ロ > < 同 > < 回 > < 回 >

Historical introduction	
000000000000000000000000000000000000000	00

Spatial scale

Approximate sizes for components of an AGN $\mathcal{M}_{BH} = 10^8 \mathcal{M}_{\odot}$, $d = 1 \, \text{Gpc}$

Region	Size			
-	[LTT]	[AU] – [pc]	[arcsec]	
R _S	15 min	2 AU	$2 imes 10^{-9}$	
AD	$1h\sim 1d$	$7\sim 200\text{AU}$	$7 imes 10^{-9}\sim 2 imes 10^{-7}$	
BLR	$8\sim 80~d$	$10^3 \sim 10^4 \; \text{AU}$	$10^{-6} \sim 10^{-5}$	
R _{DT} (inn.)	\sim 40 d	$\sim 5 imes 10^3 AU$	$5 imes 10^{-6}$	
NLR	$1\sim 100{ m yr}$	$0.3\sim 30{ m pc}$	$5 imes 10^{-5} \sim 5 imes 10^{-3}$	
radio jets	$\lesssim 10^{6}{ m yr}$	\lesssim 300 kpc	\lesssim 60	

Historical introduction	
000000000000000000000000000000000000000	00

Confrontation to observations

Spatial scale

Approximate sizes for components of an AGN $\mathcal{M}_{BH} = 10^8 \mathcal{M}_{\odot}$, $d = 1 \, \text{Gpc}$

Region	Size			
	[LTT]	[AU] – [pc]	[arcsec]	
R _S	15 min	2 AU	$2 imes 10^{-9}$	
AD	$1h\sim 1d$	$7\sim 200\text{AU}$	$7 imes 10^{-9}\sim 2 imes 10^{-7}$	
BLR	$8\sim 80~d$	$10^3 \sim 10^4 \; \text{AU}$	$10^{-6} \sim 10^{-5}$	
R _{DT} (inn.)	\sim 40 d	$\sim 5 imes 10^3 AU$	$5 imes 10^{-6}$	
NLR	$1\sim 100{ m yr}$	$0.3\sim 30{ m pc}$	$5\times 10^{-5}\sim 5\times 10^{-3}$	
radio jets	$\lesssim 10^{6}{ m yr}$	\lesssim 300 kpc	\lesssim 60	

Historical introduction	
000000000000000000000000000000000000000	00

Confrontation to observations

Spatial scale

Approximate sizes for components of an AGN $\mathcal{M}_{BH} = 10^8 \mathcal{M}_{\odot}$, $d = 1 \, \text{Gpc}$

Region	Size			
-	[LTT]	[AU] – [pc]	[arcsec]	
R _S	15 min	2 AU	$2 imes 10^{-9}$	
AD	$1h\sim 1d$	$7\sim 200\text{AU}$	$7 imes 10^{-9}\sim 2 imes 10^{-7}$	
BLR	$8\sim 80~d$	$10^3 \sim 10^4 \; \text{AU}$	$10^{-6} \sim 10^{-5}$	
R _{DT} (inn.)	\sim 40 d	$\sim 5 imes 10^3 AU$	$5 imes 10^{-6}$	
NLR	$1\sim 100{ m yr}$	$0.3\sim 30{ m pc}$	$5\times10^{-5}\sim5\times10^{-3}$	
radio jets	$\lesssim 10^{6}{ m yr}$	\lesssim 300 kpc	\lesssim 60	

AGN phenomenology The SMBH model Tes

Testing the model

Active Galactic Nuclei

- Historical introduction
- 2 AGN phenomenology
- 3 The SMBH model
- 4 Testing the model

・ロット (雪) (日) (日)

AGN phenomenology The SMBH model

Testing the model

High spatial resolution observations

Radio interferometry Evidence for a gas disc

d = 15.1 Mpc ↓ 1″ ≡ 75 pc 0′′01 ≡ 0.75 pc

Gallimore et al. (1997)

AGN phenomenology The SMBH model Testing the model

High spatial resolution observations

Radio interferometry Gas disc rotation

Syfert galaxy NGC 4258: 22 GHz (µ-wave) maser emission

annulus:

 $egin{aligned} D_{\text{inn}} &= 0.13\,\text{pc} - D_{\text{out}} = 0.26\,\text{pc} \ &\Rightarrow & 3.6 imes 10^7\,\mathcal{M}_{\odot} \ &\text{within}\ R \lesssim 0.012\,\text{pc}\ (\equiv 2500\,\text{AU}) \end{aligned}$

(Miyoshi et al. 1995)

AGN phenomenology The SMBH model Testing the model

High spatial resolution observations

Optical (HST) Gas disc rotation

M 84 (d = 17 Mpc): central 3" ($\equiv 240$ pc) H α spectrum disc: $D \simeq 80$ pc; $\Delta v = 1445$ km s⁻¹ $\Rightarrow M_{BH} \simeq 2 \times 10^9 M_{\odot}$

・ロット (雪) (日) (日)

Historical introduction	AGN phenomenology	The SMBH model	Testing the model
High spatial resolution observations			
Optical (HST) Binary BH signatures			

Balmaverde & Capetti (2006): core galaxies invariably host a radio-loud nucleus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

AGN phenomenology The SMBH model Testing the model

High spatial resolution observations

X-rays (Chandra) Binary AGN

Bianchi et al. (2008): Binary AGN in Mrk 463

MRK 463

Optical galaxy

X-ray/NIR Nuclei

・ コット (雪) ・ (目) ・ (目)

AGN phenomenology The SMBH model 1

Testing the model

◆□▶ ◆□▶ ◆□▶ ◆□▶

э

Variability observations

Reverberation mapping

Testing the model

(Netzer & Peterson 1997)

Variability observations

Reverberation mapping

NGC 7469 Light Curves Cross-Correlation Functions

AGN phenomenology The SMBH model Testing the model

Variability observations

Reverberation mapping

Line variability delayed $\tau = \frac{r}{c} (1 + \cos \theta)$ with respect to UV flux variability

・ コット (雪) ・ (目) ・ (目)

AGN phenomenology The SMBH model Testing the model

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Variability observations

Reverberation mapping

Line variability delayed $\tau = \frac{r}{c} (1 + \cos \theta)$ with respect to UV flux variability

AGN phenomenology The SMBH model Testing the model

Variability observations

Disk-jet interaction

3C 120 (BLRG)

RXTE + VLBI (Marscher et al. 2002)

AGN phenomenology The SMBH model Test

Testing the model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Variability observations

Polarimetric microvariability

 $\Delta heta \sim 2^{\circ} \Rightarrow \Delta P \simeq 10 \%$

(Andruchow et al. 2003)

Testing the model

Variability observations

Polarimetric microvariability

・ロット (雪) (日) (日) э

AGN phenomenology The SMBH model Testing

Testing the model

Variability observations

Polarimetric microvariability

(Andruchow et al. 2003)

AGN phenomenology The SMBH model Te

Testing the model

Variability observations

Extremely violent microvariability?

PKS 1510-089 $\Delta R \simeq 2 \text{ mag in} \sim 40 \text{ min}$ (Dai et al. 2001) $\Delta R \simeq 1.3 \text{ mag in} \sim 90 \text{ min}$ (Xie et al. 2004)

・ コ マ チ (雪 マ チ (雪 マ ー)
Variability observations

Extremely violent microvariability?

PKS 1510-089

(Cellone, Romero, & Araudo 2007) $\Delta V \simeq 0.6 \text{ mag in} \sim 4 \text{ days}$ $\Delta V \lesssim 0.1 \text{ mag in} \sim 1 \text{ hr}$

Variability observations

Extremely violent microvariability?

PKS 1510-089

(Cellone, Romero, & Araudo 2007) $\Delta V \simeq 0.6 \text{ mag in} \sim 4 \text{ days}$ $\Delta V \lesssim 0.1 \text{ mag in} \sim 1 \text{ hr}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Variability observations

Extremely violent microvariability?

Significance of the variability: $\frac{\sigma_{\rm T}}{\sigma_2}$

Howell et al. (1988): *Statistical error analysis in CCD time-resolved photometry with applications to variable stars and quasars*

$$\Gamma^{2} = \left(\frac{N_{2}}{N_{T}}\right)^{2} \left[\frac{N_{1}^{2}(N_{T}+P) + N_{T}^{2}(N_{1}+P)}{N_{2}^{2}(N_{T}+P) + N_{T}^{2}(N_{2}+P)}\right]$$
$$\frac{\sigma_{T}}{\Gamma_{T}\sigma_{2}}$$

Variability observations

Extremely violent microvariability?

Significance of the variability: $\frac{\sigma_{\rm T}}{\sigma_2}$

Howell et al. (1988): Statistical error analysis in CCD time-resolved photometry with applications to variable stars and quasars

$$\Gamma^{2} = \left(\frac{N_{2}}{N_{T}}\right)^{2} \left[\frac{N_{1}^{2}(N_{T}+P) + N_{T}^{2}(N_{1}+P)}{N_{2}^{2}(N_{T}+P) + N_{T}^{2}(N_{2}+P)}\right]$$
$$\frac{\sigma_{T}}{\Gamma \sigma_{2}}$$

・ コット (雪) ・ (目) ・ (目)

Variability observations

Extremely violent microvariability?

test using an incorrect photometric technique

Field star

 $\Delta \textit{V} \simeq 1.2^{mag}$ in ~ 35 min

$$\frac{\sigma_{\rm T}}{\sigma_2} = 24.0$$

$$\frac{\sigma_{\rm T}}{\Gamma \sigma_2} = 1.0$$

< ロ > < 同 > < 回 > < 回 >

 \rightarrow spurious variability!

Variability observations

Extremely violent microvariability?

test using an incorrect photometric technique

Field star

 $\Delta \textit{V} \simeq 1.2^{mag}$ in ~ 35 min

$$\frac{\sigma_{\rm T}}{\sigma_2} = 24.0$$

$$\frac{\sigma_{\rm T}}{\Gamma \sigma_2} = 1.0$$

< ロ > < 同 > < 回 > < 回 >

 \rightarrow spurious variability!

AGN phenomenology The SMBH model Testing the model

・ロト・日本・日本・日本・日本

BHs and their host galaxies

BH mass

The BH mass can be measured by:

- optical emission line widths (BLR)
- gas dynamics (radio optical)
- reverberation mapping
- accretion disk spectrum
- X-ray variability

AGN phenomenology The SMBH model Testing the model

BHs and their host galaxies

A 2.6 \times 10⁶ \mathcal{M}_{\odot} BH at the centre of the Milky Way (Schödel et al. 2002)

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

AGN phenomenology The SMBH model Te:

Testing the model

BHs and their host galaxies

The BH mass vs. bulge mass relation

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへで

AGN phenomenology The SMBH model Testing

Testing the model

BHs and their host galaxies

The BH mass vs. bulge mass relation

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > <

AGN phenomenology The SMBH model Testing the model

BHs and their host galaxies

The AGN stage

BH lie at the centres of massive spheroids (E galaxies and bulges)

Nuclear activity needs gas supply

- interactions / mergers
- bars
- inner disks

Histor	ical i	ntrodu	lction	
	000			

AGN phenomenology The SMBH model

Testing the model

BHs and their host galaxies

...etc.

